Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Jacob C. — Illustrating Evolutionary Computation with Mathematica
Jacob C. — Illustrating Evolutionary Computation with Mathematica



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Illustrating Evolutionary Computation with Mathematica

Àâòîð: Jacob C.

Àííîòàöèÿ:

An essential capacity of intelligence is the ability to learn. An artificially intelligent system that could learn would not have to be programmed for every eventuality; it could adapt to its changing environment and conditions just as biological systems do. Illustrating Evolutionary Computation with Mathematica introduces evolutionary computation to the technically savvy reader who wishes to explore this fascinating and increasingly important field. Unique among books on evolutionary computation, the book also explores the application of evolution to developmental processes in nature, such as the growth processes in cells and plants. If you are a newcomer to the evolutionary computation field, an engineer, a programmer, or even a biologist wanting to learn how to model the evolution and coevolution of plants, this book will provide you with a visually rich and engaging account of this complex subject.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 578

Äîáàâëåíà â êàòàëîã: 17.11.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Evolvica and EP, tournament selection      323—325
Evolvica and ES      260—265
Evolvica and ES, best and random selection      264
Evolvica and ES, central control      262
Evolvica and ES, comma strategy      261
Evolvica and ES, ES chromosome representation      213—215
Evolvica and ES, evaluation function      265
Evolvica and ES, evolution control function      261—263
Evolvica and ES, evolution loop      261
Evolvica and ES, placing individuals at specific locations      264
Evolvica and ES, plus strategy      261
Evolvica and ES, sample ES evolution experiment      263—265
Evolvica and ES, selection modes      262
Evolvica and ES, setting initial population      261
Evolvica and ES, starting a (1 + 5) ES      264—265
Evolvica and GA      169—173
Evolvica and GA, algorithm for GA evolution      171—173
Evolvica and GA, chromosome data structure      84
Evolvica and GA, chromosome generation      84 85
Evolvica and GA, comma strategy      171
Evolvica and GA, enumeration of all schema instances      179 199—202
Evolvica and GA, extraction of schema instances      197
Evolvica and GA, generating schema instances for a population      197
Evolvica and GA, generating schema instances over an alphabet      196—197
Evolvica and GA, generating schemata of fixed length      194—196
Evolvica and GA, options to control the GA evolution function      172
Evolvica and GA, plus strategy      171
Evolvica and GA, schema theorem and      194—202
Evolvica and GA, starting an experiment      171—172
Evolvica and GA, summary of GA implementations      169—170
Evolvica and GP, $\verb"AntTracker"$ genetic operators      408
Evolvica and GP, comma strategy      374 376 390
Evolvica and GP, evaluating mobiles by balance      383—385 388—389 390
Evolvica and GP, evolution of balanced mobiles      388—390
Evolvica and GP, functional and terminal building blocks      361
Evolvica and GP, further information      435
Evolvica and GP, generating mobile structures      385—387
Evolvica and GP, GP chromosome recombination      363—365
Evolvica and GP, GP term mutation      368—371
Evolvica and GP, GP term recombination      363
Evolvica and GP, plus strategy      374 376
Evolvica and GP, recombination at root position      361—362
Evolvica and GP, recombination function      360
Evolvica and GP, recombination of two terms      361 362
Evolvica and GP, recombination on list of terms      363 364
Evolvica and GP, starting evolution experiments      374
Evolvica and GP, term recombination      359—365
Evolvica and GP, visualizing mobiles      378—382
Evolvica string evolution implementation      12—21
Evolvica string evolution implementation, best individual      20
Evolvica string evolution implementation, evolution loop      21
Evolvica string evolution implementation, fitness by Hamming distance      20
Evolvica string evolution implementation, initial population      16
Evolvica string evolution implementation, mutation radius      17 18—19
Evolvica string evolution implementation, mutation rate      16—17 18—19
Evolvica string evolution implementation, next generation      19—20 21
Evolvica string evolution implementation, number decoding for strings      13—14
Evolvica string evolution implementation, number encoding for strings      13
Evolvica string evolution implementation, random string generation      16
Evolvica string evolution implementation, similarity measure for strings      14—16
Evolvica string evolution implementation, variation vector      16—17
Example artificial life (AL), bibliographical notes      469—470
Exons      155
Expansion mutation operator (GP)      431
Experimentum crucis of evolution strategies      212
Exploring Three-Dimensional Design Worlds Using Lindenmayer Systems and Genetic Programming      487
Expression, as adaptation step      62
Expression, duplication and      157—158
Expression, of individuals      59
Extraction of dominant alleles, chromosome interpretation      101—105
Extraction of dominant alleles, simulated diploidy      100—101
Extraction of schema instances      197
Feature space, phenotypical      58—60
Feedback, adaptive feedback components      60
Feedback, loop between genotypical and phenotypical levels      59—60
Finite state automata (FSA)      (see also evolutionary programming; evolutionary programming at work; mutation operators on FSA)
Finite state automata (FSA), $\verb"Automata"$ package for      300
Finite state automata (FSA), accommodation phase      302
Finite state automata (FSA), automata pruning      331—332 337
Finite state automata (FSA), automatic generation of      320—322
Finite state automata (FSA), compact, perfect predictors for periodic finite state automata (FSA), sequences      330—331
Finite state automata (FSA), computer programs as      298—303
Finite state automata (FSA), deriving models of the environment      298—299
Finite state automata (FSA), evaluating automaton prediction quality      328—331
Finite state automata (FSA), evolution experiment      331—338 339—341
Finite state automata (FSA), evolutionary programming of      288—289
Finite state automata (FSA), extensions of FSA evolution      338 341—342
Finite state automata (FSA), final states      300
Finite state automata (FSA), fitness-dependent mutation      341—342
Finite state automata (FSA), generating a population of FSA      321—322
Finite state automata (FSA), generating a random (Mealy) machine      320—321
Finite state automata (FSA), generating a random FSA      321
Finite state automata (FSA), initial state      299—300
Finite state automata (FSA), majority logic recombination      342
Finite state automata (FSA), Mealy machines      299—301
Finite state automata (FSA), mutation operators on      303—320
Finite state automata (FSA), perfect predictor      302 303
Finite state automata (FSA), predicting the environment with      301—303
Finite state automata (FSA), recombination and      342
Finite state automata (FSA), response to input signals      300—301
Finite state automata (FSA), states and signals      299
Finite state automata (FSA), transitions      299
Finite state automata (FSA), variable mutation step sizes      338 341
Finite state machines      see finite state automata (FSA)
Fitness inheritance      58
Fitness, $\verb"AntTracker"$ fitness evolution and genome complexity      418—420
Fitness, breeding artificial flowers      499—500 503
Fitness, differential      58
Fitness, fitness-dependent EP mutation      341—342
Fitness, fitness-proportionate selection      162—164
Fitness, function for GP mobiles      384—385 388
Fitness, GP operator selection and      428
Fitness, Hamming distance as measure of      20
Fitness, in butterfly mimesis simulation      35—36
Fitness, L-system      477—479 481 482
Fitness, schema fitness      203—204
Fitness-proportionate selection      162—164
Fitness-proportionate selection, $\verb"selectFitProp"$ function      163—164
Fitness-proportionate selection, differential survival probability      162
Fitness-proportionate selection, roulette wheel analogy      162—164
Fogel, David      75 76 294 342
Fogel, Lawrence J.      3 288 297 298 299 342 344
Foundations of Genetic Algorithms workshops      209
Fractal structure evolution      474—486
Fractal structure evolution, calculating similarity between generated sets and reference structure      477—478
Fractal structure evolution, evaluation      477—479
Fractal structure evolution, fitness      477 479 561
Fractal structure evolution, fitness evolution      479 481—482
Fractal structure evolution, genetic operators      477 482—486
Fractal structure evolution, genotype and phenotype evolution      481—482
Fractal structure evolution, GP      475 476
Fractal structure evolution, of fractal L-system      479 480—481
Fractal structure evolution, path toward optimal L-system      484—486
Fractal structure evolution, quadratic Koch island      475 476
Friedberg, R. M.      287
FSA      see finite state automata (FSA)
GA      see genetic algorithms
GA chromosomes      (see also binary GA chromosomes; diploid GA chromosomes; genetic algorithms; genetic algorithms recombination; haploid GA chromosomes; polyploid GA chromosomes)
GA chromosomes, binary      84—88
GA chromosomes, compact output form      86
GA chromosomes, cross recombination      126—128
GA chromosomes, crossover of nonhomologous chromosomes      158—161
GA chromosomes, data structure      84
GA chromosomes, defined      83
GA chromosomes, deletion      154
GA chromosomes, diploid      96
GA chromosomes, diploidy and dominance on      95—105
GA chromosomes, duplication      156—158
GA chromosomes, haploid      83—95 96
GA chromosomes, interpretation      101—105
GA chromosomes, inversion      151 152
GA chromosomes, polyploid      83—105
GA chromosomes, recombination of      133—143
GA chromosomes, RNA      88—93
GA chromosomes, visualization      86 87
GA chromosomes, with alleles from the interval [0, 1]      94
GA chromosomes, with fragment loss      154—155
GA chromosomes, with real-value alleles      93—95
Gaardner, Jostein      21 22
Gaussian density      219
Gaussian distributed random numbers in ES mutation      219—222
Gaylord, Richard      469
GECCO (Genetic and Evolutionary Computation Conference)      76 209 280 295 397
Gene pool convergence, $\verb"AntTracker"$ evolution example      418
Gene pool convergence, compact gene groups and schema theorem      206
Gene pool convergence, mutation and      178
Gene pool convergence, recombination and      178—180
Gene pool diversity and adaptations      190
Gene pool sequences      64
General evolutionary algorithm scheme      63—75
General evolutionary algorithm scheme, algorithmic scheme of evolutionary parameter optimization      71—75
General evolutionary algorithm scheme, climbing in the fog example      64—75
General evolutionary algorithm scheme, encoding and decoding parameters      70—71
General evolutionary algorithm scheme, example optimization with GA      67—75
General evolutionary algorithm scheme, gene pool sequences      64
General evolutionary algorithm scheme, multimodal objective function      67—68 69—70
General evolutionary algorithm scheme, optimization on multimodal functions      64—67
General evolutionary algorithm scheme, reproductive plan      64 65
Genetic algorithms      79—209 (see also GA chromosomes)
Genetic Algorithms + Data Structures = Evolution Programs      208 396
Genetic algorithms at work      173—190
Genetic algorithms at work, decoding and evaluating genotypes      174—176
Genetic algorithms at work, effects of genetic operators      180—185
Genetic algorithms at work, GA evolution under variable environmental conditions      185—190 191—192
Genetic algorithms at work, recombination vs. mutation      176—180
Genetic algorithms at work, visualizing the genotypes      174 175
Genetic algorithms evolution schemes      168—169
Genetic algorithms evolution schemes, algorithm for GA evolution      171—173
Genetic algorithms evolution schemes, classical GA      168—169 170
Genetic algorithms evolution schemes, comma strategy      168 171 190 191
Genetic algorithms evolution schemes, further information      169
Genetic algorithms evolution schemes, GA selection      168—169
Genetic algorithms evolution schemes, plus strategy      168 171 190 192
Genetic algorithms evolution schemes, starting an experiment      171—172
Genetic algorithms evolution schemes, steady state GA      169
Genetic algorithms evolution schemes, under variable environmental conditions      185—190 191—192
Genetic algorithms evolution schemes, with elitist selection      169
Genetic Algorithms in Search, Optimization, and Machine Learning      207
Genetic algorithms mutation      105—121
Genetic algorithms mutation, diploid chromosomes      110—112
Genetic algorithms mutation, effect of mutation operator      180—184
Genetic algorithms mutation, effect on population structure      177—178
Genetic algorithms mutation, FSA mutation operators vs      303—304
Genetic algorithms mutation, haploid chromosomes      106—108
Genetic algorithms mutation, homologous alleles      110
Genetic algorithms mutation, minor role of      81
Genetic algorithms mutation, new alleles introduced by      105
Genetic algorithms mutation, point mutation operator      106
Genetic algorithms mutation, polyploid chromosomes      108—110
Genetic algorithms mutation, recombination vs. mutation      176—180
Genetic algorithms mutation, RNA chromosomes      112—117
Genetic algorithms mutation, schema theorem and      205
Genetic algorithms mutation, visualization using facial expressions      117—121 122
Genetic algorithms recombination      121—148
Genetic algorithms recombination, binary recombination      124—126
Genetic algorithms recombination, central role of      123
Genetic algorithms recombination, cross recombination of chromosomes      126—128
Genetic algorithms recombination, discrete recombination      123—124 126
Genetic algorithms recombination, effect of recombination operator      183 184
Genetic algorithms recombination, gene pool convergence effects      178—180
Genetic algorithms recombination, masked recombination      128—131 148 149
Genetic algorithms recombination, meiotic recombination of diploid chromosomes      143—146
Genetic algorithms recombination, multirecombination      131—133
Genetic algorithms recombination, mutation vs      176—180
Genetic algorithms recombination, of GA chromosomes      133—143
Genetic algorithms recombination, on lists      123—133
Genetic algorithms recombination, schema theorem and      204—205
Genetic algorithms recombination, with faces      146—148 149
Genetic algorithms, additional genetic operators      148—161
Genetic algorithms, analogy to observable mutative events      148
Genetic algorithms, applications      82
Genetic algorithms, bibliographical notes      207—209
Genetic algorithms, binary encoding for      82
Genetic algorithms, classifier population adaptations      290
Genetic algorithms, comma strategy      162 171 190 191
Genetic algorithms, covariance and selection theorem      207
Genetic algorithms, crossover of nonhomologous chromosomes      158—161
Genetic algorithms, deletion operator      153—155
Genetic algorithms, described      79—80
Genetic algorithms, diploidy and dominance on GA chromosomes      95—105
Genetic algorithms, discrete encoding principle      80
Genetic algorithms, dualism principle      80 81
Genetic algorithms, duplication operator      155—158
Genetic algorithms, elementary building blocks principle      80 81—82
Genetic algorithms, evolution schemes      168—169 170
Genetic algorithms, evolutionary algorithms and      344
Genetic algorithms, GA recombination      121—148
Genetic algorithms, GA strategy      170
Genetic algorithms, GP and      345—346 358—359 367 372 373
Genetic algorithms, haploid GA chromosomes      83—95
Genetic algorithms, hierarchical      293
Genetic algorithms, inversion operator      150—153
Genetic algorithms, optimization example      67—75
Genetic algorithms, perpetual novelty and      79 81 105 121—122
Genetic algorithms, plus strategy      162 171 190 192
Genetic algorithms, point mutation on GA chromosomes      105—121
Genetic algorithms, polyploid GA chromosomes      83—105
Genetic algorithms, principles of      80—82
Genetic algorithms, program induction with      291
Genetic algorithms, reproduction and recombination principle      80—81
Genetic algorithms, schema theorem for      190—207
Genetic algorithms, selection and GA evolution schemes      161—169
Genetic algorithms, with Evolvica      169—173
Genetic and Evolutionary Computation Conference (GECCO)      76 209 280 295 397
Genetic L-system programming (GLP)      490 517 518
Genetic operators      (see also specific operators)
Genetic operators, $\verb"AntTracker"$ example      407 408 420—422
Genetic operators, ArtFlowers      497 498
Genetic operators, competition      427—428
Genetic operators, ES graphical notation for      253
Genetic operators, for LISP programs      292
Genetic operators, L-system      477 482—486
Genetic operators, operator weight adaptation      428 430
Genetic programming      345—397 399—435
Genetic Programming and Data Structures      396—397
Genetic Programming Conference      295
Genetic programming evolution scheme      371—377
Genetic programming evolution scheme, copy operator      372
Genetic programming evolution scheme, evaluation and best selection      373
Genetic programming evolution scheme, GA scheme vs      372
Genetic programming evolution scheme, initialization      371—372
Genetic programming evolution scheme, mutation operator      372
Genetic programming evolution scheme, notation      373
Genetic programming evolution scheme, operator application      373
Genetic programming evolution scheme, operator selection      372—373
Genetic programming evolution scheme, recombination operator      372
Genetic programming evolution scheme, starting evolution experiments      374
Genetic Programming II: Automatic Discovery of Reusable Programs      392 435
Genetic Programming III: Darwinian Invention and Problem Solving      396 435
Genetic programming in action      377—392
Genetic programming in action, encoding mobiles      377—378
Genetic programming in action, generating mobile structures      385—388
Genetic programming in action, GP evolution of balanced mobiles      388—392 393—395
Genetic programming in action, graphical representation of mobiles      378—382
Genetic programming in action, mobile evaluation by balance      382—385 388—389 390
Genetic programming mutation      367—371
Genetic programming mutation, $\verb"AntTracker"$ mutation operator      408 421 422
Genetic programming mutation, advanced mutation operators      431—432
Genetic programming mutation, collapse subtree mutation operator      432
Genetic programming mutation, duplication operator      432
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå