|
|
Результат поиска |
Поиск книг, содержащих: Finite-size scaling
Книга | Страницы для поиска | Cardy J. — Scaling and renormalization in statistical physics | | Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 286, 300—302 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 412 | Hughes B.D. — Random Walks and Random Environments: Random Environments (том 2) | 259, 266—267, 340 | Herrmann H.J. (ed.), Roux S. (ed.) — Statistical models for the fracture of disordered media | 128 | Stauffer D., Aharony A. — Introduction To Percolation Theory | 70 | Stauffer D., Aharony A. — Introduction to percolation theory | 70 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 354 | Unertl W.N. — Physical Structure | 803, 804, 805 | Pfeiler W. — Alloy Physics: A Comprehensive Reference | 674 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 260 | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 441 | Pathria P.K. — Statistical Mechanics | 441—449 | Domb C., Lebowitz J.L. — Phase transitions and critical phenomena (Vol. 11) | 57, 68, 69, 72, 79, 88, 115, 121 | Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 39, 42, 182, 224 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 260 | Henkel M. — Conformal Invariance and Critical Phenomena | 63—68, 75, 77, 161, 162, 274, 330 | Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 81, 83—84, 203, 289, 343—346 | Davies P. — The New Physics | 257 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 581 | Plischke M., Bergersen B. — Equilibrium statistical physics | 218—223, 277, 364, 365, 368—370 | H. Fehske, R. Schneider, A. Weile — Computational Many-Particle Physics | 84, 114—128, 307, 475, 591, 630 |
|
|