|
|
Результат поиска |
Поиск книг, содержащих: Central charge
Книга | Страницы для поиска | Cardy J. — Scaling and renormalization in statistical physics | | Sornette D. — Critical phenomena in natural sciences | | Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 285, 297, 300 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 135 | Cox D., Katz S. — Mirror symmetry and algebraic geometry | 310, 425 | Frenkel E., Ben-Zvi D. — Vertex algebras and algebraic curves | 42—44 | Kac V. — Vertex Algebra for Beginners | 31, 79 | Etingof P., Frenkel I., Kirillov A. — Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations | 23 | Kohno T. — Conformal Field Theory and Topology | 28 | Giamarchi T. — Quantum Physics in One Dimension | 99 | Ueno K. — Advances in Moduli Theory | 198 | van Baal P. (ed.) — Confinement, duality, and non-perturbative aspects of QCD | 457, 531, 533 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 1) | 541, 667, 685 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 193, 195 | Siegel W. — Fields | IVC7, XC5 | Nash C. — Differential Topology and Quantum Field Theory | 174 | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 48, 75—76 | Wakimoto M. — Infinite-Dimensional Lie Algebras | 255 | Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 255 | Kac V. — Vertex Algebras for Beginners | 31, 79 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 515 | Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 33, 50, 88, 237 | Siegel W. — Fields | IVC7, XC5 | Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 193, 195 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 2) | 541, 667, 685 | Henkel M. — Conformal Invariance and Critical Phenomena | 56, 77, 78, 331, 354 | Morii T., Lim C., Mukherjee S. — The physics of the standard model and beyond | 153 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 295, 296, 312 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 224, 242, 297 |
|
|