|
|
Результат поиска |
Поиск книг, содержащих: Sylvester matrix
Книга | Страницы для поиска | Allgower E.L., Georg K. — Introduction to numerical continuation methods | cf. (11.6.6) | Coste M. — Introduction to semialgebraic geometry | 21, 22, 37 | Mishra B. — Algorithmic algebra | 227 | Lutkepohl H. — Handbook of Matrices | 213, 278 | Coste M. — An introduction to semialgebraic geometry | 21, 22, 37 | Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1 | 149 | Diamond F., Shurman J. — First Course in Modular Forms | 232 | Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra | 150 | Sheil-Small T. — Complex polynomials | 10 | Stetter H. J. — Numerical polynomial algebra | 178, 185 | Dongming Wang — Elimination Practice: Software Tools and Applications | 2 | Bronstein M. — Symbolic integration 1. Transcendental functions | 18, 19 | Kozen D.C. — The Design And Analysis Of Algorithms | 184, 185 | Jerry Shurman — Geometry of the Quintic | 110 | Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 32 | Slurmfels B. — Solving systems of polynomial equations | 2, 44, 48, 55 | Antsaklis P.S., Michel A.N. — Linear Systems | 541 | Lander E.S. — Symmetric design: an algebraic approach | 6 | Mignotte M., Stefanescu D. — Polynomials: An Algorithmic Approach | 34 | Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 285, 288—289, 407—409 |
|
|