|
|
Результат поиска |
Поиск книг, содержащих: Boussinesq equation
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 387.F | Olver P.J. — Equivalence, Invariants and Symmetry | 186, 237 | Conte R. — Painleve Property: One Century Later | 624, 627—629, 634, 639, 641 | Debnath L. — Nonlinear water waves | 145, 155—156, 159, 173, 207, 306 | Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 428 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 9, 95, 108, 265, 333, 339, 341, 357, 533 | Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | 262, 282, 375, 376, 395, 415, 417 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 709, 1332 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 543, 675 | Holmes M.H. — Introduction to Perturbation Methods | 149 | Powers D.L. — Boundary Value Problems: And Partial Differential Equations | 211 | Zakharov V.E. — What is integrability? | 27 | Ito K. — Encyclopedic Dictionary of Mathematics | 387.F | Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 97, 98, 117, 191, 197, 201, 232, 237, 262, 265—268, 282, 283, 386 | Maimistov A.I., Basharov A.M. — Nonlinear optical waves | 291 | Matveev V.B., Salle M.A. — Darboux Transformation and Solutions | 3, 43 | Boon J.P., Yip S. — Molecular hydrodynamics | 123 | Conte R. — The Painlevé property: One century later | 624, 627—629, 634, 639, 641 | Meleshko S.V. — Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and Analytical Techniques with Applications to Engineering | 235 | Dickey L.A. — Soliton Equations and Hamiltonian Systems | 13 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 61, 64—65 | Sachdev P.L. — Nonlinear ordinary differential equations and their applications | 427, 428, 431, 434 | Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 272, 286 |
|
|