|
|
Результат поиска |
Поиск книг, содержащих: Lorenz attractor
Книга | Страницы для поиска | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 186 | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 523 | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 203—204 | Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 332, 372 | Brin M., Stuck G. — Introdution to dynamical system | 25 | Lynch S. — Dynamical Systems with Applications Using Mathematica® | 160 | Lorenz E.N. — Essence of Chaos | See Butterfly attractor | Falconer K.J. — Techniques in Fractal Geometry | 217—220 | Smith L.A. — Chaos: A Very Short Introduction | 66, 67 | Smith P. — Explaining chaos | 11, 38, 49, 54—55, 134 | Gleick J. — Chaos. Making a new science | 28, 30, 140, 149, 218, 245—247, 269, insert following page 114 | Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 2217 | Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 84, 404, 411, 428, 432, 464 | Haykin S. — Kalman filtering and neural networks | 99 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 103—104 | Chepyzhov V.V., Vishik M.I. — Attractors for equations of mathematical physics | 65 | Mullin T. — The nature of chaos | 222—223 | Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | (see Lorenz equations) | Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 212, 241 | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 186—187 | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 186—187 | Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 87 | Falconer K. — Fractal geometry: mathematical foundations and applications | 203—204, 204 |
|
|