|
|
 |
| Результат поиска |
Поиск книг, содержащих: Geometric measure theory
| Книга | Страницы для поиска | | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 49, 69—82 | | Berger M. — A Panoramic View of Riemannian Geometry | 190, 344, 627, 717 | | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 53, 76 | | Gross M., Huybrechts D., Joyce D. — Calabi-Yau Manifolds and Related Geometries: Lectures at a Summer School in Nordfjordeid, Norway, June 2001 | 32, 33, 36, 58 | | Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 72—74, 158, 170, 171, 176, 277 | | Morgan F. — Riemannian geometry, a beginners guide | 93 | | Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 518 | | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 72—74, 158, 170, 171, 176, 277 | | Falconer K. — Fractal geometry: mathematical foundations and applications | 53, 76 |
|
|