|
|
Результат поиска |
Поиск книг, содержащих: Parseval identity
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 179 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 18.B 159.A 160.C 192.K 220.B, C, E | Handscomb D.C. — Methods of numerical approximation | 31 | Carmona R. — Practical Time-Frequency Analysis | 29 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 361 | Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 272 | Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 134 | Lifanov I.K., Poltavskii L.N., Vainikko G.M. — Hypersingular integral equations and their applications | 34 | Ito K. — Encyclopedic Dictionary of Mathematics | 18.B, 159.A, 160.C, 192.K, 220.B, 220.C, 220.E | Strichartz R.S. — The way of analysis | 547, 549, 670, 676, 679 | Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 240 | Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 157 | Hu S.-T. — Elements of real analysis | 265, 268 | Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 369 | Egorov Yu.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 151 | Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 151 | de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 229, 231 | Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 157 | Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 355 | Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 13, 32, 66, 99, 103, 104, 137, 162, 168, 191, 193, 210, 228 | Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 196, 197 | Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 196, 197 |
|
|