|
|
Результат поиска |
Поиск книг, содержащих: Hoelder space
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 272 | Grubb G. — Functional Calculus of Pseudo-Differential Boundary Problems | (A.8) ff., 2.1.10', 4.1.1 | Joyce D.D. — Compact Manifolds with Special Holonomy | 5—6 | Dacorogna B. — Direct Methods in the Calculus of Variations | 529 | Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 7 | Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 41 | Ito K. — Encyclopedic Dictionary of Mathematics | 168.B | Mikhlin S.G., Prossdorf S. — Singular Integral Operators | 209 | Triebel H. — Theory of Function Spaces | 36, 51 | Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 37, 115 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 79 | Van Neerven J. — The Adjoint Of A Semigroup Of Linear Operators | 3.4 | Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 430 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 5—6 |
|
|