Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Rings and Things and a Fine Array of Twentieth Century Associative Algebra

Автор: Faith C.

Аннотация:

A survey of aspects of the development of associative rings and modules in the twentieth century including: (1) updates on topics treated in the author's two Springer-Verlag Grundlehren (Foundations) volumes written a quarter of a century ago, (2) a considerable expansion of topics to include exciting new ideas that drive and dominate contemporary research. The title of this book is derived from The Taming of the Shrew.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 449

Добавлена в каталог: 29.10.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Pappus      23
Paravaluation      9.11f
Pardo      see “Gomez”
Park      94
Park theorem      8.4F
Parshall      23
Parshall, Karen H.      258
Pascaud      101
Passman      46 96 176 177—178 227 254
Pedoe, A.      291
Pendleton      231
Pendleton — Ohm theorem      14.36
Penrose, Sir Roger      323—324
Perello, Carlos      308
Perfect ring      3.31s
Perils radical      3.33Cf
Perils — Jacobson radical      3.33Cf
Perils — Walker theorem      11.11
Perlis      70 243
Perlis — Jacobson radical      3.33Cf
Perlis, Sam      256—259 260
PF ring      4.20
Piatetski-Shapiro      291
Picasso, Pablo      271 311n
Pickel      see "Hartley"
PID      1.15s
Pierce      216
Pillay      62 104 111 117—118
Pillay theorem      3.6A—3.6E 4.1B
Pillay, Kanyakumari      305
Pillay, Khandon      305
Pillay, Lalita      305
Pillay, Poobhalan ("Poo")      285 305—306 309
Poincare, Henri      300 317
Polynomial identity (PI) ring      15.1s 15.14s
Pomerance, C.      290n
Popescu      70 171—172
Popescu theorem      3.33D 9.36s
Posner      227
Posner theorem      15.6
Power series ring $R\langle x\rangle$ (also R[[x]])      2.0s 6.12ff
Primary decomposable      5.1A'
Primary ideal      2.25
Primary ring      5.1A's
Prime avoidance      16.5ff (Cf.
Prime ideal      2.18As 2.22s
Prime radical      2.31f
Prime ring      2.22s
Prime, associated      2.25 16.11
Prime, Noetherian      16.9Ds
Prime, rank of a      2.22s
Prime-avoidance theorem      16.5 16.7A—16.7B 16.8A
Primitive ideal      2.6s
Primitive ring      2.6s
Principal ideal domain (PID)      1.14ff 1.15s
Principal ideal ring (PIR)      5.1Bs
Principal ideal theorem      2.22
Principal indecomposable module (= prindec)      3.30f
Prindec      see "Principal indecomposable"
Procesi      72 99
Product theorem      5.28
Projective cover      3.30s 3.31
Projective geometry      4.Ass
Projective module      3.1As
Projective, uniformly big      3.26
Proper polynomial identity      15.4s
Proust, Marcel      283
Pruefer domain      4.1D 9.29s
Pruefer ring      9.29s
Pruefer, discrete      9.35f
Pruefer, strong      9.35s
Pseudo-Frobenius (PF) ring      4.20
Pseudo-Frobenius ring      4.20
Pseudo-injective module      6.36As
Puninski      64
Puninski theorem      6.E
Pure essential extensions      6.46 6.46A
Pure injective module      1.25 6.Bs 6.45 6.45ff
Pure-injective envelope      6.46
Pure-injective module      1.25s 6.Af
Pure-quotient infective      6.46(AB)
Pure-semisimple module      6.56s
Purely infinite ring      4.8s
Purely inseparable extension      2.9Af
Pusat — Yilmaz — Smith theorem      14.38
q.f.d.      see "Quotient finite dimensional"
Qf      see "Quasi-Frobenius"
QF-1 rings      13.29s 13.30 13.30E
Quasi-Frobenius (QF) ring      3.5Bs
Quasi-Frobenius extension      13.27
Quasi-Frobenius ring      3.5Af 4.23B §13
Quasi-injective hull      3.9D
Quasi-injective module      3.9As
Quasi-valuation      9.10s
Quasiregular element      3.33Cf
Quasiregular ideal      3.33Cf
Quentel theorem      9.24(5)
Quigley theorem      1.33—1.34
Quillen — Suslin theorem      3.25
Quotient      see "Martindale" "Ore"
Quotient CS      12.4Cs
Quotient finite dimensional module      3.13s 5.20As 7.27—7.31
Quotient finite dimensional ring      3.13s
Quotient ring      3.12Bf
Radical extension of a ring      2.9s 2.10s
Radical of a module      3.19As
Radical of a ring      2.6s
Radical, Baer      2.38A
Radical, ideal      2.22s
Radical, Jacobson      2.6s
Radical, Koethe      3.50s
Radical, lower nil      2.38A
Radical, nil      2.34s
Radical, Perlis      3.33Cf
Radical, prime      2.31f
Radical, T-nilpotent      3.31
Radical, vanishing      3.31
Ramamurthi — Rangaswamy theorem      6.16
Ramanathan, K.G.      294
Ramanujan (Prize)      282
Ramras — Snider theorem      14.23
Rank of a free module      1.1
Rank of a prime ideal      2.22s
Rao      99
Rao, Ranga      292
Raphael, Robert      309
Rational extension of a module      12.0Ass
Rational extension, maximal      12.0Ass
Rationally complete module      12.0B
Ratliff      168
Raynaud      210
Razmyslov      227
RD-pure submodule      1.17As
Reagan, Ronald ("Ron")      272
Reduced group      1.11
Reduced order of a group of automorphisms      2.7s
Reduced part of a group      1.12
Reduced rank of a ring      3.56s
Reduced ring      §12
Reeves, Billy      322
Refinement of chains of submodules      2.17F
Refinement Theorem      2.17F
Regev theorem      15.13
Regis, Ed      281 316
Regular element      2.16Fs 3.6As 3.12Bf 3.55
Regular local ring      14.16s
Regular, strongly      4.3As 4.19As
Regular, top      12.5s
Reichardt theorem      2.21Bf
Reiner      18 103 219
Reis      230
Reis — Viswanathan theorem      16.As 16.8Af
Reisel      49
Reiten      161 see
Rentschler      211 218
Rentschler — Gabriel theorem      14.28A
Rentschler, Rudolph      277
Representations of bounded degree      15.1(7) 15.12 15.17ff
Resco      22 66 197
Resco — Stafford — Warfield theorem      3.36E
Resco, Richard      287
Restricted maximal condition      7.38s
Restricted minimum condition      7.38s
Restricted right minimum condition (= RRM)      7.38S
Restricted right socle condition (= RRS)      7.38s
Ribenboim      18 127 176
Richman theorem      9.29B 12.3
Richmond, Ered      306
Richoux      30
Rief, Rita      314
Rieffel      77
Rieffel, Marc      319—320
Rim      254
Rinehart      143
Rinehart theorem      14.15.8
Rinehart, George      303n
Riney, David      261
Ring minus-1      1.1
Ring, aleph ($\aleph_0$)-continuous      12.4As
Ring, almost maximal valuation      5.4Bs
Ring, arithmetical      6.4 6.5A
Ring, Artinian      2.1f
Ring, balanced      13.29s
Ring, basic      3.52
Ring, boolean      2.17E
Ring, bounded      5.44Bs
Ring, Camillo      3.33' 5.20
Ring, chain      3.14As
Ring, co-Noetherian      7.49
Ring, cogenerator      3.3'(4) 3.5B' 4.20ff
Ring, conch      9.10s
Ring, continuous      12.4As
Ring, Dedekind Finite (DF)      4.6A 4.6.A'
Ring, Dedekind Infinite      4.6B
Ring, endomorphism      1.2
Ring, F-semiperfect      6.52s
Ring, FBM      8.8ff 11.11ff
Ring, FFM      8.8ff 11.11ff
Ring, finite module type      8.8ff
Ring, finite representation type      see "FFM"
Ring, FPF      4.26s see
Ring, generalized Boolean      2.8B
Ring, generalized uniserial (serial)      5.1Bs
Ring, Goldie      3.13s
Ring, Hilbert      3.36s
Ring, injective cogenerator      3.3'(4) 3.5' 4.20ff
Ring, Krull      9.21s
Ring, lift/rad      3.30f
Ring, linearly compact      5.4Af
Ring, local      3.14f
Ring, Loewy      3.33As
Ring, Manis      9.10s
Ring, Marot      9.20s
Ring, matrix      §2 2.16Dff
Ring, matrix cancellable      §10 p.174
Ring, max      3.31 3.32ff
Ring, maximal      5.4Aff
Ring, Noetherian      2.1f
Ring, nonsingular      4.2s 5.3Ds §12
Ring, opposite      2.5Bf 2.43s
Ring, Osofsky      3.33'
Ring, perfect      3.31s
Ring, PF      4.20
Ring, PP (= PP)      7.3As
Ring, primary      5.1A's
Ring, primary-decomposable      5.1A'
Ring, prime      2.22s
Ring, primitive      2.5s
Ring, product      1.3
Ring, pseudo-Frobenius (PF)      4.20
Ring, q.f.d.      5.20As 7.27—7.31
Ring, QF-1      13.29s
Ring, QI      3.9A 7.37f 7.39—7.43
Ring, quasi-Frobenius (QF)      3.5Af 4.23B §12
Ring, radical extension      2.10s
Ring, radical of a      2.6s 3.33Cf
Ring, reduced      §12
Ring, regular local      §15
Ring, S      12.0As see
Ring, sandwich      9.14s
Ring, SBI      3.54f 8.4Bs
Ring, self-injective      3.2s 3.5Af 4.5ff 4.20ff 5.42 6.28
Ring, semiartinian      3.33As
Ring, semilocal      3.11As
Ring, semiperfect      3.30s 6.52s
Ring, semiprimary      3.11As 5.1A's
Ring, semiprime      2.2s 2.34
Ring, semiprimitive      2.6f
Ring, semisimple      2.1
Ring, serial      5.1Bs
Ring, sigma cyclic      5.1s
Ring, similar      3.51f
Ring, simple      2.1f
Ring, skalar      12.0As
Ring, stable range of a      6.3Fs
Ring, subdirect product of      2.6ff
Ring, subdirectly irreducible      2.17D
Ring, triangular matrix      2.6s
Ring, uniserial      5.1Bs
Ring, valuation      3.14As 5.1A'f
Ringdal      see "Amdal"
Ringel      160 254
Ringel theorem      13.30E
Ringel, Klaus      287
Ritt      143
Ritt (Lecturer)      287
Ritt algebra      7.16s
Ritter      88
Rizvi      150 188
Rizvi theorem      12.4D 12.7
Rizvi — Yousif theorem      12.4D 12.8
Robertson, Malcolm      291
Robinson      129
Robson      74 80 181 211
Robson theorem      7.4
Rockefeller (Institute)      278
Roggenkamp      177
Roggenkamp theorem      11.11f
Roiter      160
Roitman      164
Roitman theorem      9.3 9.8
Roitman — Scott theorem      11.10ss
Roos      143 209
Rose — Baldwin theorem      3.43As
Roseblade theorem      11.12 11.14
Roselli      194
Rosenberg      4 24 49 161 207
Rosenberg theorem      2.16J
Rosenberg — Rinehart theorem      14.15.11
Rosenberg, Alex      303n
Rosenthal, Arthur      255
Rothenberger, Fritz      291—292
Rowen      44—45 76 224
Rowen PI-algebra      15.14s
Rowen polynomial      15.14s
Royster, Kimberly      255
Rubin      190
Rubin theorem      12.11
Rubin, Jerry      321
Russell, Bertram      323
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте