Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Rings and Things and a Fine Array of Twentieth Century Associative Algebra

Автор: Faith C.

Аннотация:

A survey of aspects of the development of associative rings and modules in the twentieth century including: (1) updates on topics treated in the author's two Springer-Verlag Grundlehren (Foundations) volumes written a quarter of a century ago, (2) a considerable expansion of topics to include exciting new ideas that drive and dominate contemporary research. The title of this book is derived from The Taming of the Shrew.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 449

Добавлена в каталог: 29.10.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Cedo example      12.13f
Cedo theorem      6.33—6.34
Cedo — Herbera theorem      9.7
Cedo, Ferran      309
Center      2.5s
centralizer      2.5Cs
CF ring      13.31s
CFPF ring      5.12
Chain module      5.1A'f 16.46s
Chain ring (= valuation ring)      3.15As
Chain, ascending Loewy      3.33As
Chain, composition      2.17Cs
Chain, equivalent      2.17Fs
Chain, refinement of      2.17C
Chandra, Harish      282—283
Chandra, Lily      282
Change of rings theorem      14.8A 14.8B 14.8C
Character module      4.Bs
Characteristic equation      2.6B
Chase      24 87 95 110 218 245 253
Chase theorem      1.17A 3.4D—3.4E 6.6
Chase — Faith Theorem      4.6
Chase, Stephen ("Steve")      278 299
Chatters      189 211
Chatters module      7.21s
Chatters theorem      7.1—7.2 7.21
Cheatham      90
Cherlin theorem      3.43As
Cherlin, Chantal      xxix
Cherlin, Gregory      xxix 260 266n 285
Chevalley      23 85 101 179—180
Chevalley theorem      2.6 2.6ff 9.19(4)
Chevalley, C.      277
Chihara, Theodore ("Ted")      261
Chinese remainder theorem (reference)      5.1A'f
Clark      101 104
Classical Krull dimension      14.1A 14.24
Classical quotient ring      3.12Bf 3.6As 6.26 7.35ff
Classical right quotient ring ($Q_{cl}^{r}(R)$)      3.12Bf 6.36 7.35s
Classical valuation ring      9.15B
Clements, Samuel      see "Mark Twain"
Clements, Susy      295
Closed (essential) ideal      4.11
Closed ideal      4.11
Clouseau, "Inspector"      294
Co-faithful      3.9 6.32As
Co-faithful module      3.9 3.62As
Co-Noether (also Noetherian)      7.49
Cogenerator module      3.3'
Cogenerator ring      3.3' 4.23A
Cogenerator, minimal      3.3'f
Cohen — Montgomery theorem      12.F
Cohen — Ornstein theorem      2.19B
Cohen, I. theorem      2.19A
Cohen, I.S.      105 108 110
Cohen, M.      183
Cohen, M. theorem      12.A
Cohen, Miriam      289
Cohen, Paul J.      273—274
Coherent ring      6.6
Cohn      10—12 16 23 24 67 90 121 197 22—223 225—226
Cohn pure module      6.As
Cohn pure submodule      6.As
Cohn theorem      2.7s 6.24 6.31
Cohn — Bergman theorem      9.26C
Cohn, Paul Moritz      283 299
Cohn, Richard Moses ("Dick")      283
Colby      160
Colby theorem      6.8—6.9
Cole (Prize)      282
Compact faithful module      3.9 3.62As
Complement direct summands (cds)      8.6s
Complement right ideal      3.2Es
Complement submodule      3.2Es
Complement, maximal      13.14B
Complemented lattice      12.4s
Complete local ring      5.4B
Complete, maximally      5.14As
Completely primary ring      5.1A's
Completely sigma $(= \Sigma, \sigma)$ injective      7.32s 7.32—7.34
Completion of a local ring      5.4B
Completion, p-adic      5.4B 13.4C
Composition series      2.17F
Conch subring      9.10s
Conch, an element      9.10s
Conjugate subring      2.5Cs
Connell theorem      11.1—11.4 11.9—11.10
Connell, Ian      292
Cononsingular ring      12.0As
Continuous geometry      12.4s
Continuous module      12.4C's
Continuous ring      12.4As
Corner theorem      1.16
Correl, Ellen      260
Cotorsion-free      1.16A
Couchot theorem      6.7B—6.7C
Courter theorem      12.0B
Courter, Dick      283
Cover, projective      3.30s
Cowling, Vincent      299
Cox      198
Cox theorem      13.23
Coxeter, H.M.S.      291
Cozzens      66 69 143 149 197
Cozzens V-domains      3.20f
Cozzens — Faith theorem      2.6F
Cozzens, John      258 286—287 303 312
Cozzens, Margaret ("Midge")      286
Crawley — Jonsson theorem      8.3
Critical composition series      14.33s
Critical quotients      14.33s
Critical submodule      14.33s
Croisot      62 77 179 227
Croisot, Robert      284
Crossed product      2.5Bff
CS module      12.4s
CS ring      12.4s
CS, quotient      12.4C
Curie, Pierre      321
Curtis      18 49
Cyclic algebra      2.5Bff
Cyclic group      1.6
Cyclic presented      6.5As
Cyclic, sigma      5.1As
D      see "Dual"
D-ring      see "Dual"
Dade      176 185
Dade theorem      3.17 11.11ff
Dales, H.G.      260
Damiano — Faith theorem      3.18C
Davis      164—165
Davis theorem      9.9 9.29
Decomposable module      1.2
Dedekind      see §17
Dedekind finite ring      4.6A 4.6A'
Dedekind independence theorem      17.0
Dedekind infinite      4.6B
Dedekind ring      9.29s
Degree, bounded      5.1
Dehn      221
Dehn definition      15.1
Deligne theorem      1.31B
Delta ($\Delta$) injective module      3.10A 7.45s 13.4E
Delta ($\Delta$) ring      7.47s
DeMeyer      99 245
Dense right ideal      9.27s §12
Dense ring of linear transformations      2.6 3.8A
Dense rings of linear transformations (l.t.'s)      2.6 3.8A
Density theorem, Chevalley — Jacobson      2.6 3.8A
Dependence theorem      17.1
Derivation      1.32B
Derivation, inner      2.5f
Desargues      23
Deskins, Barbara      262
Deskins, W.E. ("Cupcake")      261 262
Dewey, Thomas      298
Dicks      124 130 159—160
Dicks — Menal theorem      3.24B
Dicks, Warren      308—309
Dickson theorem      2.5f—2.6s
Dickson, L.E.      15 19 23
Dickson, Leonard E.      258
Dickson, S.E.      184
Dickson, S.E. theorem      §13
Dieudonne      24 69
Differential polynomial ring      3.20f 7.15s
Differential, ordinary      7.15s
Dikranjan      194
Dimension of a prime ideal      2.22s
Dimension, global      14.3s
Dimension, Goldie      3.13s
Dimension, homological      14.3s
Dimension, injective      14.3s
Dimension, Krull      14.1 A 14.24 14.26 14.28s
Direct factor (= summand)      1.1—1.4 2.0ss
Direct product      1.1
Direct sum      1.1
Direct summand      1.1—1.4
Directly finite ring      4.6A
Dischinger      103
Discrete Pruefer ring      9.35f
Discrete ring (= skew field)      2.0s
Discrete valuation domain      6.46f 9.28s
Divisible group      1.10
Division algebra      2.0s 2.7ss
Dixmier      218
Dixmier theorem      14.47
Dlab      254
Dlab — Ringel theorem      13.30A—13.30D
Dlab, V.      287
Dobbs      137
Dold, Albrecht ("Al")      264 277
Domanov      98
Domanov theorem      11.9'
Domination of a local ring      9.18
Domination of local ring      9.18
Donnelly, Sarah      xxix
Drazin      30 101
Dual (D) ring      13.12s
Dual module      1.5
Dual ring      13.12s
Duality context      13.1s
Duality functor      13.1s
Duality, inverse of      13.1a
Duality, Morita      13.1s
Dubois theorem      1.20
Dugas — Goebel theorem      1.16A 1.16B
Dukas, Helen      279
Dung      189 see
Durkheim, Emil      275
Dyer-Bennet, John      259
Dyson      48
Dyson, Freeman      271 278 283 301 314n
Dyson, Ima      283
E-reflexive module      13.1s
Eakin      184 245
Eakin theorem      10.5—10.7
EC      see "Existentially closed"
Eckmann — Schoepf theorem      3.2D
Eckmann, Beno      277
Eckstein      49
Eddy, Captain      287
Eggert      170—171 191
Eggert theorem      9.31
Ehrlich      28 89
Ehrlich theorem      4.3As 6.3B
Eilenberg      52 54 77 206—207 218
Eilenberg theorem      3.4
Eilenberg, Samuel ("Sammy")      262 312—314 320
Einstein, Albert      279—280 286 314 316
Eisenbud      37 72 114 184 229
Eisenbud — Griffith theorem      5.3A—5.3B
Eisenbud, David      312
Eklof — Sabbagh theorem      6.20
Elementary divisor ring (= EDR)      3.6Bs
Elementary equivalent      6.43
Elliott      127
Elliott, Joanne      299
Embedding of a group (module)      3.3s
Endo      117—118 245
Endo theorem      4.A1 4.27—4.28 5.40 9.24(4)
Endomorphism ring      1.2
Epimorphism, flat      12.3 12.14
Epimorphism, module      3.0
Epimorphism, ring      12.1
Equivalence chains      2.17Fs
Equivalence of categories      3.51f
Equivalence, Morita      3.51f
Equivalent categories      3.51f
Erdoes, Paul      290—291
Erikson, Erik      272n
Ernest, John A.      276
Essential extension      3.2Ds
Essential submodule      3.2Ds
Euclid      316 323
Evans      158
Evans theorem      6.3F 8.G
Exact sequences      14.3s
Exchange finite exchange property      8.3s
Exchange module      8.3s
Exchange property      8.3s
Exchange ring      8.4As
Existentially closed (= EC) rings      6.20s
Existentially closed sfields      6.24
F-semiperfect ring      6.52s
f.e.      see "Finitely embedded"
Facchini      64 159 239
Facchini theorem      5.4E 6.17—6.18 8.8f 9.36 9.37 13.11B
Facchini — Faith theorem      6.4
Facchini, Alberto      309—310
Factor set      2.5Bff—2.6ss
Faith theorem      1.32A 2.10—2.12 2.15A—2.15B 2.16C—2.16D 2.371 3.5C 3.7A—3.7B 4.4 4.19B—4.19D 4.25 4.29—4.31 5.27—5.35 5.38 5.41—5.42 5.44—5.45 5.48 5.52—5.56 6.30 6.39 7.32—7.34 7.38—7.47 9.4—9.6 9.13—9.15 9.34 12.6 13.31 13.42—13.43 16.15 16.19—16.20 16.24 16.27—16.32 16.34—16.37 16.40—16.45 16.50 §17
Faith — Herbera theorem      8.8ff 13.10
Faith — Menal theorem      13.18—13.20 13.37A—13.37B 13.38
Faith — Utumi theorem      4.2A 3.9D 7.6 3.9D
Faith — Walker Theorem      3.5A 3.5B 3.5D 8.2A 8.2B 13.33
Faith, Carl      253ff
Faith, Cindy      261 270 302
Faith, Eldridge      258—259
Faith, Frederick      257
Faith, Heidi      261 270 276—277 296
Faith, Herbert Spencer ("Dad")      258
Faith, Vila Belle Foster ("Mama")      256
Faith-Herbera      159
Faithful Modulle      2.6s
Falk, Rick      258
Farkas      178
Farkas — Snider theorem      12.C
Faticone theorem      5.46 5.48
Faticoni      104 117
Faticoni, Theodore ("Ted")      306 307 307n
Faulkner, William      324
FBM (finite bounded module type) ring      8.8ff
Feit, Walter      301
Fermat, Pierre      318 323
Feynman, Richard      281
FFM (finite module type) ring      8.8ff 11.11ff(p.177)
FGC classification theorem      5.11
FGC ring      5.1 As
FGF ($f\cdots g$ modules$\hookrightarrow$ freebees) ring      13.31s
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте