Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Rings and Things and a Fine Array of Twentieth Century Associative Algebra

Автор: Faith C.

Аннотация:

A survey of aspects of the development of associative rings and modules in the twentieth century including: (1) updates on topics treated in the author's two Springer-Verlag Grundlehren (Foundations) volumes written a quarter of a century ago, (2) a considerable expansion of topics to include exciting new ideas that drive and dominate contemporary research. The title of this book is derived from The Taming of the Shrew.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 449

Добавлена в каталог: 29.10.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Field formally real      1.30 1.40s 2.39s
Field ordered      1.30
Field splitting      2.5Bff—2.6ss 2.51
Field, absolutely algebraic      1.28 2.40s
Field, algebraic      1.28
Fieldhouse      91
Fieldhouse, David      292
Findlay      169 180
Findlay — Lambek theorem      9.27s §12
Fine, Nathan      260
Finite basis of a module      1.1
Finite fractions      9.28s
Finite representation type      see "FFM"
Finitely embedded (= f.e.) module      3.58s
Finitely embedded ring      3.58s 7.8s 7.8ff
Finitely generated ($=f\cdots g$) module      1.1
Finitely generated ($=f\cdots g$) ring      2.21A 2.21Af
Finitely PF (= FPF) ring      4.26ff
Finitely presented ($=f\cdots p$) module      6.As
Finitely pseudo-Frobenius (= FPF)      4.26s
Fisher      225
Fisher — Osterburg theorem      12.D(1) 12.D(1)
Fisher — Snider theorem      4.12
Fisher, B.      301
Fisher, Louis      296 317
Fitting      38 86 105
Fitting lemma      3.64—3.66 8.8f
Fitting theorem      3.38 3.69 5.1A'f
Fitzgerald, F. Scott      317
Flat embedding      3.16C 16.33
Flat epimorphism      12.3 12.14
Flat module      4.As
Flexner, Abraham      270 278 281 316
Fontana      171
Formanek      98 178 224 227
Formanek — Jategoankar theorem      12.G
Forsythe      94
Fossum      168
Fossum — Griffith — Reiten theorem      4.25
Foster, Vila Belle ("Mama")      256
Fp-injective module      6.As
FP-injective ring      6.Es 6.Bs
FPF      see "PF"
FPF (= finitely pseudo Frobenius) product theorem      5.28
FPF ring      4.26s see
FPF ring theorem      5.42
FPF split-null extension      5.41
Fractionally FP-injective      6.4s
Fractionally self-injective (= FSI)      5.9s
Fraenkel, A.      313
Franco      310
Frattini      71
Frattini subgroup      3.34s
Fred      see "Faith"
free      see "Algebra"
Free algebra      15.15
Free basis      1.1
Free direct summands      3.79 5.34s
Free module      1.1 3.1As
Free rank      5.34s
Free rank of a module      5.34s
Free ring      14.15(4)
Freud      276
Freyd      52 77
Friend, David      290n
Frink, Aileen      262
Frink, Orrin      262 277
Frobenius      5 2.0
Froeschl theorem      9.15C
FSFPI ring      6.4
Fuchs      6 69—70 122 135 157 166
Fuchs — Salce theorem      6.19 9.13f
Fuchs — Salce — Zanardo theorem      9.46A
Fuchs — Szele theorem      1.26A
Fuelberth — Teply theorem      4.1F
Fulbright      263 303 308 314
Fuld, Mrs. Felix      273
Fuller      59 70 77—78 161 254 see
Fuller theorem      5.2E 6.57
Fuller, Kent R.      287
Fully bounded Noetherian (FBN) ring      3.36Es 15.17s
Fully bounded ring      3.36Es
Fully invariant submodule      1.3
Fussell, Paul      269
Gabriel      52 90 181 184 211 218
Gabriel theorem      4.Cf 12.1s 14.27 14.28A 14.28B
Gaddis, John Lewis      272
Gaerding, Lars      269
Galois      ix
Galois group      2.7ss
Galois subring (= fixring)      2.7ss 17.0ff
Galois theory      2.7
Galois, Evariste      256
Gambill, Robert ("Bob")      260
Gandhi ("Mahatma")      283 295
Gangiolli, Minoto      283n
Gaudi, Antonio      311 321
Gauss      132
Gauss theorem      1.28C(2)
Gauss, Karl Friedrich      255
Gelfand, I.M.      302
General Wedderburn theorem      3.51ss
Generalized Dedekind ring      9.36s
Generalized principal ideal theorem      2.23
Generated, $\aleph$      1.1 3.1B
Generated, countably      1.1
Generated, finitely      1.1
generator function      1.32A
Generator of a category      3.3f
Generator of a field      1.28ff 1.32A
Generator of a group      1.6
Generator of a module      1.1
Generator of mod-R      3.3f
Generic division algebra      15.16f
Generic matrix ring      15.15
Generic product of rings      5.23As
Gentile      174
Gentile theorem      13.39—13.40
Genus of a module      5.22f
Genus, big      5.22f
Genus, little      5.22f
Geometry, continuous      12.4s
Geometry, projective      12.4As
Geramita, Anthony Vito      304—305
Gill      111
Gill theorem      5.1 5.4D 5.16
Gillman, Leonard ("Lenny")      260
Gillman, Reba      260
Gilmer      171
Gilmer theorem      9.19 9.35f 16.8B—16.8C
Gilmer — Heinzer theorem      9.19(5)
Ginn      198
Ginn — Moss theorem      7.8
Global dimension      14.3s
Global dimension theorem      14.12
Goedel, Kurt      273 281 318
Golan, Hembda      288
Golan, Jonathan      288
Goldie      63 74 77 79 179—181 227 238
Goldie dimension      3.13s 16.9B 16.16
Goldie ring      3.13
Goldie theorem      3.13
Goldie — Small theorem      14.31A
Goldie, Alfred      284—285 299
Goldman      72 99 185 243 253 see
Goldman theorem      3.36 3.36B
Goldstine, Herman      281
Golod      74
Golod — Shafarevitch theorem      3.43As
Gomez Pardo      135
Gomez Pardo theorem      13.31 (10)
Gomez Pardo — Guil Asensio theorem      12.8A 13.34—13.35
Gonshor, Harry      283
Goodearl      77 94—95 97—98 123 130 141 143 158 174 182 187 193 215 242
Goodearl theorem      4.1G 4.1K 4.2C 4.8—4.9 4.11 14.15.9—14.15.11
Goodearl — Handelman theorem      4.8
Goodearl — Moncasi theorem      6.31
Goodearl — Warfield theorem      6.3H
Goodearl — Zimmermann — Huisgen theorem      14.41—14.45
Goodearl, Kenneth ("Ken")      303 309
Goodearl-Warfield      17 22 72—74 80 212—214
Goodman, Adolph W.      255 292
Gopalakrishnan      209
Gorbachev, Mikhail      272
Gordon      71 74 211
Gordon theorem      3.34A(2) 14.33
Gordon — Robson theorem      14.29A 14.29B 14.30—14.31 14.43s
Gorenstein, Daniel ("Danny")      299 300—303 315
Gorenstein, Helen      302—303
Gorenstein, Julia      303
Gould, S.H.      256 291
Goursaud      61—62
Goursaud theorem      13.7A
Govorov      68
Govorov — Lazard theorem      4.A
Grad, Arthur      300
Graves, Robert      323
Green      210
Greenberg — Vasconcelos theorem      14.20
Grell      85
Griffin      165 170—171 191
Griffin theorem      9.12 9.30 9.33
Griffith      55 110 165 see
Griffith — Eisenbud theorem      3.5Af
Grobman, Arnold      285
Groethendieck      100 184
Groethendieck theorem      4.16As
Groethendieck, Alexandre      301
Gross, Mason      286
Group algebra      2.39—2.40
Group rings      §11
Group, abelian      1.6—1.21
Group, bounded order      1.8—1.9 1.14
Group, circle      17.1ss
Group, divisible      1.10—1.13
Group, free      3.24A 3.24B 3.74r6
Group, Galois      2.7s
Group, general linear      3.74s
Group, locally finite      11.9 12.0C
Group, polycyclic by finite      11.12
Group, primary      1.7
Group, reduced      1.11f
Group, torsion      1.6 1.14
Group, torsionfree      1.6
Gruson      210
Guil      see "Asensio"
Gulliksen      215—216
Gupta theorem      4.2B
Gupta, Ram      292
Guy, Arthur      279—280
Guy, Dorothy      279—280
Guy, Jennifer      280n
Hadamard, Jacques      317
Hajarnavis      189 211
Hajarnavis — Norton theorem      13.16—13.17
Hale, Jack      260
Hall theorem      2.50f
Hall, M.      48 78 94
Hall, P      178
Halmos, Paul      281
Halperin, I.      291
Hamilton      15 21 2.0s
Hamilton — Cayley theorem      2.6B
Hamiltonian group      3.75s
Hamsher theorem      3.32f
Handelman      97 123 190
Handelman — Goodearl theorem      4.8
Handelman — Lawrence theorem      12.13
Hannah      97
Hansen theorem      3.11A
Harada      158 219
Harada theorem      3.9D 13.9D 4.1A
Harada — Ishii theorem      3.8B
Harada, K.      301
Harcenko (Kharchenko)      45 130
Harcenko theorem      12.A 12.B
Hardy, Thomas      265
Harmani      30
Harrison      24
Hart      77 214
Hartley      176
Hartley — Pickel theorem      3.76
Hartley, Brian      309
Hasse      19
Hauger      143
Hausdorff      31
Hazard, Clifton      259
Heaton, Bob      283
Heidi      see "Faith"
Heinzer      72 127
Heinzer theorem      10.5—10.7
Heitman      123
Heitman — Levy theorem      6.3Bf
Henriksen theorem      2.16H 4.7D 6.3D
Henriksen, Melvin      260 286n 290
Hensel      85 154
Henselian ring      8.Gs
Heraclitus      296n
Herbera      101 104 112 159 160 169 197
Herbera theorem      3.6B—3.6E 4.17A 6.14 8.8ff 9.7
Herbera — Shamsuddin theorem      8.C
Herbera — Xue theorem      6.15
Herbera, Dolors      306 308—309
Hermite ring      6.3Bs
Herstein      18—19 26—28 30 43 47 71 75 223—225
Herstein theorem      2.15Af 2.16Js 2.38D 2.44—2.47
Herstein — Small theorem      2.38C 3.41—3.42
Herstein, Israel ("Yitz")      277 286 301 304 315
Herzog      160 205
Herzog theorem      16.58
Herzog, Fritz      262
Higgins      74
Higman      74 160 177
Higman problem      11.11f
Higman theorem      3.43Ass 11.11ff
hilbert      22 210
Hilbert basis theorem      2.20ff
Hilbert division ring      2.0f
Hilbert Fourteenth problem      2.21Bf
Hilbert group ring      11.14
Hilbert Problem (= HP)      2.21Bf
Hilbert ring      3.36s
Hilbert Seventeenth Problem, Part II      see "Artin E."
Hilbert — Nullstellensatz      2.30C 3.36B
Hilbert — Syzygy theorem      14.9
Hilbert, David      267 271 308 315 315n
Hildebrandt, T.H.      291
Hill, George William      300
Hille, Einar      313
Hingley, Ronald      303
Hinohara      109 123
Hinohara theorem      3.23C 6.3Af
Hirano — Park theorem      8.4F
Hitler, Adolph      269—272 274 274n
Hochschild      24 49 99
Hochschild theorem      4.15B 14.15.4
Hochschild, Gerhard      291 301
Hochster      174
Hochster — Murthy theorem      10.1
Hocking, John G.      261
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте