Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Rings and Things and a Fine Array of Twentieth Century Associative Algebra

Автор: Faith C.

Аннотация:

A survey of aspects of the development of associative rings and modules in the twentieth century including: (1) updates on topics treated in the author's two Springer-Verlag Grundlehren (Foundations) volumes written a quarter of a century ago, (2) a considerable expansion of topics to include exciting new ideas that drive and dominate contemporary research. The title of this book is derived from The Taming of the Shrew.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 449

Добавлена в каталог: 29.10.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lie      87
Lie algebra (ring)      2.42s
Lie simple      2.42f
Lift/rad ring      3.30f
Ligh      30
Lilly, Eli      259
Linear compact (= l.c)      5.4Af
Linear transformation (= l.t.)      2.6 3.8A
Linearly compact module      5.4Af
Local FPF ring theorem      4.30
Local ring      3.14f (Cf. p.85)
Local, complete      5.4B
localization      12.3s
Locally split submodule      6.16s
Loewy      69
Loewy length      3.33as
Loewy module      3.33As
Los theorem      1.21A
Louden      175
Lowenstein-Skolem      134
Lower nil radical      2.38A
Lucas      167
Lucas theorem      9.28 9.35
Lueroth theorem      1.29
Lyons, Richard      300—302 302n
m-adic topology      16.Af
m.c.      see "Closed"
Macdonald      181
MacEacharn      211
Mack, Mary Ellen      258
MacLane      52 77 206
MacLane theorem      5.15B
MacLane, Saunders      255
Maclean      166
Mal’cev      49 87 94 122 129 132
Mal’cev domain      6.28s
Mal’cev theorem      6.28
Manis      165
Manis valuation ring      9.10s
Mares      68
Marot      168
Marot ring      9.20s
Martindale      48 101 254
Martindale quotient ring      §17 Notes
Maschke      175
Maschke theorem      §10
Mastrian, Barbara      258
Matlis      63 85 93 159 231
Matlis problem      8.Hf 8.3
Matlis theorem      5.4B 5.4C 5.5 6.7A 6.9—6.10 6.19 13.4C
Matlis — Papp theorem      3.4C 8.1
Matlis, Eben      281
Matrix units      2.16D—2.16E 4.6B
Matrix, cancellable      §10 p.174
Matrix, ring      §2 2.16D—2.16J
Matsumura      213
Max module      7.27s
Max pair      9.10s
Max ring      3.32f
Maximal annihilator ideal      2.37Es
Maximal annulet (= maxulet)      2.37Es
Maximal completion      5.14As
Maximal completion of a valuation ring      5.14 As
Maximal condition      2.17As
Maximal essential extension      3.2D 3.2E
Maximal ideal      2.37s
Maximal order      4.28
Maximal principle      2.17B
Maximal quotient ring      9.27s 12.0Ass
Maximal regular ideal      4.4
Maximal ring      5.4Bs
Maximal valuation ring      5.4D
Maxulet      2.37Es 16.30s
Mazur, Barry C.      316n
Mazur, the "Famous"      316n
McAdam      233
McCarthy      164
McCarthy theorem      4.1C
McConnell      214
McConnell theorem      14.46
McCoy      40 94
McCoy rings      6.38f
McCoy Theorem      2.36 2.37B 6.40 16.1—16.2
McKenzie, Ralph      291
McKnight, J.D., Jr. ("Jim")      260
McLaughlin theorem      11.9
Megibben theorem      3.7
Meiss, Millard      283
Menal      30 65 101 104 121 123 157 159 169
Menal conjecture      13.35s
Menal theorem      4.16A 4.17B 6.3J 13.19 13.20 13.32—13.33
Menal — Moncasi theorem      6.3E
Menal — Vamos theorem      6.1 6.22—6.23
Menal, Pere      xxix 287 308—310
Menini      127 197
Menini, Claudia      xxix
Merzljakov      88
Meyberg      68
Michler      60 65 86 95 148 181 227 see
Michler — Villamayor theorem      7.38s
Mikhalev, A.B.      296—297
Mikhovski (Mihovski)      253—254
Mikhovski (Mihovski) theorem      §17 Notes
Millay, Edna St. Vincent      323
Miller, Barbara      xxix 258
Milnor      88
Milnor, John ("Jack")      269 312
Minimal prime ideal      2.22s 2.36A
Minimum condition on a module      2.17As
Mintz, Rose ("Rosie")      306
Miro, Joan      311n
Mitchell      52 77
Mitchell, Barry      305
Mittag-Leffler      269
Miyashita      60
mod-R      3.51
Module, aleph or $(\aleph)$-generated      1.1
Module, algebraically compact      1.25s
Module, balanced      3.50Bf
Module, basic      3.52
Module, character      4.Bs
Module, compact faithful (CF)      3.9 3.62As
Module, completely decomposable      8.As
Module, completely injective      7.32s
Module, counter      16.9Cs
Module, cyclic presented      6.5A
Module, divisible      1.10
Module, dual      1.5
Module, essential over      3.2Ds
Module, essential sub      3.2Ds
Module, faithful      2.6s
Module, flat      4.As
Module, genus of a      5.23As
Module, indecomposable      1.2 8.As
Module, injective      3.2s
Module, irreducible      2.18as 16.9A
Module, irreducible sub      3.14B 16.9A
Module, linearly compact      5.4Af
Module, Loewy      3.33As
Module, nonsingular      4.1Es
Module, principal cyclic      3.30f
Module, projective      3.1As
Module, pseudo      6.36As
Module, pure-injective      1.25s 6.Af 6.46—6.57
Module, quasi-injective      3.9As
Module, quotient finite dimensional (= q.f.d.)      see "Listing"
Module, radical of a      3.19As
Module, semiartinian      3.33As
Module, sigma $(\Sigma)$-cyclic      5.1As
Module, sigma $(\Sigma)$-injective      3.7As 3.14—3.16 7.33—7.34
Module, sigma or $\Sigma$-completely      7.33—7.34
Module, singular      4.1Es
Module, special      7.24s
Module, subdirect product of      2.6f
Module, subdirectly irreducible      2.17D
Module, torsionfree      1.6
Module, torsionless      1.5
Module, uniform      3.14A
Module, uniserial      5.1A'f
Mohammed      188—189
Mohammed — Sandomierski theorem      12.10
Moncasi      30 123
Moncasi, Jaume      309—310
Monk theorem      8.4E
Monroe, Marilyn      265
Montgomery      see "Cohen"
Montgomery example      4.6D
Montgomery theorem      §17 Notes
Montgomery, Deane      267—269
Montgomery, Kay      267
Montgomery, s.      48
Moore, E.H.      258
Morita      18 76—78 108 161 177 194 254
Morita duality      13.1s 13.4A
Morita equivalence      3.51f §17
Morita theorem      3.51 11.11s 13.4A 13.7 13.30F
Morita, Kiiti      320
Morse, Louise      266
Morse, Marston      264—266 275
Moskowitz, Morris ("Moe")      256n
Moss      see "Ginn"
Mostert, Paul      256 260
Mostow      49
Mostow theorem      2.52f
MP (Matlis’ Problem)      see "Matlis"
Mueller (Mueller, B.) theorem      13.1 13.5 13.27
Mueller, B.      68 108 181 188—189 197
Mueller, W.      103
Multiplicatively closed (= m.c.) subset      3.16Bf 3.17 12.3As
Murase theorem      5.2C
Myashita      60
Mycielski      121
Nagahara      24 251
Nagao      218
Nagata      34 74 85 108 167 210
Nagata Theorem      2.21Bf 9.24(1) 14.21
Nagata — Higman theorem      3.43Ass
Nakayama      24 30 55 79 218
Nakayama lemma      3.35
Nakayama theorem      2.13 5.2B 13.7 13.15A
Nakayama — Asano theorem      2.13 5.2A
Nakayama — Faith theorem      2.13 5.2A 13.7A—13.7B
Nastasescu      60 70 194 see
Nastasescu — Popescu theorem      3.33D
Neider, Charles      268 295
Neider, Joan      268 295
Neider, Susy      295
Nelson, Edward ("Ed")      282
Neroslavskii      141 see
Nesbitt      78
Nesbitt — Thrall theorem      13.30A
Netanyahu      288
Neumann, B.H.      176
Newton, H.      258
NFI module      7.38 7.43
Nicholson      68 122 157 158
Nicholson theorem      8.4B 8.4C
Nietzsche, Friedrich      297
Nil ideal      2.6s 2.34As
Nil radical      2.34s 2.35s
Nil ring      2.34As
Nilpotent element      2.6s
Nilpotent ideal      2.34As 3.37s
Nilpotent ring      12s 2.34As
Nilpotent, essentially      3.80
Nilpotent, locally      2.34B
Nilpotent, properly      2.29f
Nilpotent, strongly      2.33s
Nobusawa      24
Noether $\mathcal{P}$-ring      3.15As
Noether depth      16.33s
Noether module      2.17As
Noether prime ideal, sup.      3.15B
Noether problem      2.21 2.21Bf
Noether ring      2.2s 2.17As
Noether spectrum (= spec)      14.35
Noether theorem      2.5A 2.18
Noether — Lasker theorem      2.27
Noether, E.      18—19 23 33 39 86 242
Noether, Emmy      285
Noether, locally      7.23
Noether, piecewise      9.36s
Nonsingular module      4.1Es
Nonsingular ring      4.1Es 5.3Ds §12
Northcott      206 213
Norton      see "Hajarnavis"
Nouaze — Gabriel theorem      14.28B
Nullstellensatz, weak      3.36B
Nunke theorem      1.21A 1.21Bf
O'Keefe, Georgia      xxix 306
O'Nan, Michael ("Mike")      300
O'Neill, John      xxix
Oberst      68
Oberst, Ulrich      277
Odnoff, Erik      257
Oehmke, Bob      261
Oehmke, Theresa      261
Ohm      231
Onodera      122 133 251
Onodera theorem      13.14A 13.30F
Oppenheim, Joseph ("Joe")      283
Oppenheimer, J. Robert      270 281
Oppenheimer, Kitty      281
Opposite ring (algebra)      2.5Bf 2.43s 4.13
Order of a group      2.6ff
Order, linear      see "Chain module (ring)"
Order, maximal      4.28
Order, reduced      2.7s
Ore      142
Ore condition      3.12Bf 6.26
Ore domain      6.26f
Ore ring      3.12Bf 7.35s
Ore theorem      6.26 7.14ff
Ornstein      139
Ornstein theorem      3.20
Ornstein, Ahuva      288
Ornstein, Avraham      288
Orsatti      194
Orthogonal idempotents      1.2
Orton, William ("Bill")      294
Oshiro      188 195
Osofsky      66 70 92 103 153 161 166 179 201 207 210
Osofsky example      4.24
Osofsky ring      3.4' f
Osofsky theorem      3.3 3.18A 4.2A 4.20 4.22 4.22ff 12.4C' 13.2 14.15.7
Osofsky — Smith Theorem      12.4C 12.4C' 12.4F—12.4G
Osofsky, Abe      277
Osofsky, Barbara      258 277 283—284 308—309
Osterburg      see "Fisher" "Snider"
Ostrowski      111
O’Meara      95
O’Neill      9 67 123
O’Neill theorem      1.21Cff
p-Adic completion      5.4B 13.4C
p-adic integers      4.24 (Cf. p.85)
p-injective module      6.Es
Page, S.      104 171 287
Page, S. theorem      5.49—5.51
Pais, Abraham      278—279
Papp      63 159 see
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте