Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hoffman J.D. — Numerical Methods for Engineers and Scientists
Hoffman J.D. — Numerical Methods for Engineers and Scientists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Numerical Methods for Engineers and Scientists

Àâòîð: Hoffman J.D.

Àííîòàöèÿ:

Hoffman (mechanical engineering, Purdue U.) introduces engineers and scientists to numerical methods that can be used to solve mathematical problems arising in engineering and science that cannot be solved by exact methods. His general approach is to introduce a type of problem, present sufficient background to understand the problem and possible methods of solving it, develop one or more numerical methods, and illustrate the methods with examples. He include bad methods as well as good to clarify why some work and some do not. He has significantly revised the first edition, published by McGraw-Hill in 1992, and added a new section with several FORTRAN programs for implementing the algorithms developed.Copyright © 2004 Book News, Inc., Portland, OR


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 823

Äîáàâëåíà â êàòàëîã: 23.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Polynomial approximation, inverse interpolation      217—218
Polynomial approximation, Lagrange polynomials      198—204
Polynomial approximation, least squares polynomials      (see also “Least squares approximation”) 225—234 (see also “Least squares approximation”)
Polynomial approximation, multivariate polynomials      218—220
Polynomial approximation, Neville’s algorithm      201—204
Polynomial approximation, Newton backward-difference polynomials      211—213
Polynomial approximation, Newton forward-difference polynomials      213—215
Polynomial approximation, numerical examples      197—198 200—201 203—204 207—208 212—213 214—215 217—218 219—220 220 223—225 227—228 230—231 232—233
Polynomial approximation, programs for      235—241
Polynomial approximation, properties of polynomials      see “Polynomials properties
Polynomial approximation, Stirling polynomial      216
Polynomial approximation, successive univariate polynomials      218—220
Polynomial approximation, summary      242—243
Polynomial deflation      195—196
Polynomial interpolation      see “Polynomial approximation”
Polynomial roots of      155—167
Polynomial roots of, Bairstow’s method      164—167
Polynomial roots of, Descartes’ rule of signs      156—157
Polynomial roots of, ill-conditioned polynomials      157
Polynomial roots of, introduction to      155—158
Polynomial roots of, Newton’s method for complex roots      162—163
Polynomial roots of, Newton’s method for multiple roots      160—162
Polynomial roots of, Newton’s method for multiple roots, basic method      160
Polynomial roots of, Newton’s method for multiple roots, modified function method      160
Polynomial roots of, Newton’s method for multiple roots, multiplicity method      160
Polynomial roots of, Newton’s method for simple roots      158—163
Polynomial roots of, polynomial deflation      159—160
Polynomial roots of, quadratic formula      156
Polynomial roots of, rationalized quadratic formula      156
Polynomial roots of, root polishing      157
Polynomial roots of, summary      167
Polynomials, properties of      190—196
Polynomials, properties of, deflation      195—196
Polynomials, properties of, differentiation of      193 194—195
Polynomials, properties of, division algorithm      194
Polynomials, properties of, error term      192
Polynomials, properties of, evaluation of      194—196
Polynomials, properties of, factor theorem      194
Polynomials, properties of, general form of      190
Polynomials, properties of, Horner’s algorithm      194
Polynomials, properties of, integration of      193
Polynomials, properties of, nested multiplication      194 195—196
Polynomials, properties of, remainder theorem      194
Polynomials, properties of, synthetic division      195—196
Polynomials, properties of, Taylor polynomial      192
Polynomials, properties of, Taylor polynomial, remainder term      192
Population growth applied problems      429 432
Power method      see “Eigenproblems power
Power method, basis of      91—92
Power method, direct power method      90—91
Power method, inverse power method      92—95
Power method, shifted power method      95—101
Power series      7—8
PRECISION      4
Precision, double      5
Precision, quad      5
Precision, single      5
Predictor-corrector methods for ODEs, Adams — Bashforth — Moulton method      383—388
Predictor-corrector methods for ODEs, modified Euler method      368—370
Press, W.H.      7 75 111 169 179 222 242 279 315 413 488
Program, main      3
Programming languages      3
Programs, boundary-value ODEs      483—488
Programs, boundary-value ODEs, fourth-order Runge — Kutta shooting method      483—486
Programs, boundary-value ODEs, second-order equilibrium method      486—488
Programs, convection equation      691—701
Programs, convection equation, BTCS method      699—701
Programs, convection equation, Lax method      692—694
Programs, convection equation, Lax — Wendroff one-step method      694—695
Programs, convection equation, MacCormack method      695—697
Programs, convection equation, upwind method      697—699
Programs, eigenvalues      112—118
Programs, eigenvalues, direct power method      112—114
Programs, eigenvalues, inverse power method      115—118
Programs, finite element method      759—769
Programs, finite element method, boundary-value ODEs      760—763
Programs, finite element method, diffusion equation      766—769
Programs, finite element method, Laplace (Poisson) equation      763—766
Programs, general philosophy of      3
Programs, initial-value ODEs      408—413
Programs, initial-value ODEs, extrapolated modified midpoint method      410—412
Programs, initial-value ODEs, fourth-order Adams — Bashforth — Moulton method      412—413
Programs, initial-value ODEs, fourth-order Runge — Kutta method      408—410
Programs, Laplace (Poisson) equation      575—580
Programs, Laplace (Poisson) equation, five-point method Neumann BCs      577—579
Programs, Laplace (Poisson) equation, five-point method, Dirichlet BCs      575—577
Programs, Laplace (Poisson) equation, Poisson equation      579—580
Programs, nonlinear equations, roots of      173—179
Programs, nonlinear equations, roots of, Newton’s method      173 174—176
Programs, nonlinear equations, roots of, secant method      173 176—177
Programs, nonlinear equations, roots of, systems of equations      173 177—179
Programs, numerical differentiation      273—278
Programs, numerical differentiation, direct fit polynomial      273—274
Programs, numerical differentiation, divided difference polynomial      276
Programs, numerical differentiation, Lagrange polynomial      275
Programs, numerical differentiation, Newton forward-difference polynomial      277—278
Programs, numerical integration      310—315
Programs, numerical integration, Romberg integration      313—315
Programs, numerical integration, Simpson’s 1/3 rule      312—313
Programs, numerical integration, trapezoid rule      310—312
Programs, parabolic PDEs      639—645
Programs, parabolic PDEs, BTCS method      642—643
Programs, parabolic PDEs, Crank — Nicolson method      643—645
Programs, parabolic PDEs, FTCS method      640—642
Programs, polynomial approximation      235—241
Programs, polynomial approximation, direct fit polynomial      235—236
Programs, polynomial approximation, divided difference polynomial      238
Programs, polynomial approximation, Lagrange polynomial      237
Programs, polynomial approximation, least squares polynomial      240—241
Programs, polynomial approximation, Newton forward-difference polynomial      239
Programs, systems of linear algebraic equations      67—75
Programs, systems of linear algebraic equations, Doolittle LU factorization      69—71
Programs, systems of linear algebraic equations, simple Gauss elimination      67—69
Programs, systems of linear algebraic equations, successive-over-relaxation (SOR)      73—75
Programs, systems of linear algebraic equations, Thomas algorithm      71—73
Projectile applied problems      431 432
Propagation path      510—511
Propagation path for the convection equation      506
Propagation path for the convection-diffusion equation      523
Propagation path for the Laplace equation      518
Propagation problems for hyperbolic PDEs      see “Convection equation”
Propagation problems for parabolic PDEs      see “Diffusion equation”
Propagation problems for PDEs, general concepts, asymptotic steady state solutions      637—639
Propagation problems for PDEs, general concepts, consistency      605—606
Propagation problems for PDEs, general concepts, convection, general features of      655—657
Propagation problems for PDEs, general concepts, convergence      605 610—611
Propagation problems for PDEs, general concepts, diffusion, general features of      592—593
Propagation problems for PDEs, general concepts, domain of dependence      592 655—656 657
Propagation problems for PDEs, general concepts, exact solutions for convection      652—653 656
Propagation problems for PDEs, general concepts, exact solutions for convection, diffusion      587—589
Propagation problems for PDEs, general concepts, explicit methods      594—595 599 657
Propagation problems for PDEs, general concepts, finite difference approximations      597—598 658—659
Propagation problems for PDEs, general concepts, finite difference approximations, space derivatives      598
Propagation problems for PDEs, general concepts, finite difference approximations, time derivatives      597—598
Propagation problems for PDEs, general concepts, finite difference equations      599
Propagation problems for PDEs, general concepts, finite difference grids      596 658
Propagation problems for PDEs, general concepts, fundamental considerations      591—596 657—658
Propagation problems for PDEs, general concepts, implicit methods      594—595 599 657
Propagation problems for PDEs, general concepts, implicit numerical diffusion      664—665
Propagation problems for PDEs, general concepts, implicit numerical dispersion      664—665
Propagation problems for PDEs, general concepts, information propagation speed, numerical      594 595
Propagation problems for PDEs, general concepts, information propagation speed, physical      592 595 655
Propagation problems for PDEs, general concepts, introduction to      587—591 651—655
Propagation problems for PDEs, general concepts, Lax equivalence theorem      610
Propagation problems for PDEs, general concepts, modified differential equation      see “MDEs”
Propagation problems for PDEs, general concepts, order      605—606
Propagation problems for PDEs, general concepts, range of influence      592 655—656
Propagation problems for PDEs, general concepts, stability      606—610
Propagation problems for PDEs, general concepts, summary      645—646 701—702
Propagation problems for PDEs, stability analysis      606—610
Propagation problems for PDEs, stability analysis, amplification factor      607
Propagation problems for PDEs, stability analysis, definition of      605
Propagation problems for PDEs, stability analysis, discrete perturbation method      607
Propagation problems for PDEs, stability analysis, examples      609—610 612 615 620 633 636 660 662 666—667 674 679 688—689
Propagation problems for PDEs, stability analysis, Fourier components      608
Propagation problems for PDEs, stability analysis, Fourier series      608
Propagation problems for PDEs, stability analysis, matrix method      607
Propagation problems for PDEs, stability analysis, methods of      607
Propagation problems for PDEs, stability analysis, nonlinear instability      607
Propagation problems for PDEs, stability analysis, von Neumann method      607—610
Propagation problems for PDEs, stability analysis, wave number      608
Propagation problems, ODEs      326
Propagation problems, PDEs      510 512—514
Pseudocode      3
QD method      see “Quotient-Difference method”
QR factorization      105
QR method for eigenproblems      104—109
Quad precision      5
Quadratic convergence      149
Quadratic formula      156
Quadratic formula, rationalized      153 156
Quadrature      see “Numerical integration”
Quadrature, definition of      285—286
Quadrature, introduction to      16
Quadrilateral elements, FEM      740—741
Quasilinear PDE, definition of      504
Quotient-Difference method      169
Rabinowitz, P.      111 169
Rachford, H.H.      618 627
Radiation heat transfer problem      336—338
Ralston, A.      111 169
Range of influence, convection equation      506 656
Range of influence, definition of      508
Range of influence, diffusion equation      520
Range of influence, Laplace equation      518
Range of influence, wave equation      523
Range of integration      291
Rao, S.S.      713
Rationalized quadratic formula      153 156
Rayleigh — Ritz approach to FEM      727—734
Rayleigh — Ritz approach to FEM, element equation      728
Rayleigh — Ritz approach to FEM, functional      727
Rayleigh — Ritz approach to FEM, nodal equation      728 731
Rayleigh — Ritz approach to FEM, numerical example      731—732 732—734
Rayleigh — Ritz method      438 714—719
Rayleigh — Ritz method for boundary-value problems      717—718
Rayleigh — Ritz method, basis of      716
Rayleigh — Ritz method, numerical example      718—719
Rayleigh — Ritz method, steps in      716
Reaction (chemical) rate applied problem      249—250
Real characteristics      511
Rectangular elements, FEM      740—741
Reddy, J.N      713
Redundant set of equations      19
Refining a root      129 133
Regula falsi method      see “False position method”
Relative error      62
Relaxation (Southwell) method      64
Relaxation factor      see “Over-relaxation factor”
Remainder term of Taylor polynomial      348
Remainder theorem for polynomials      194
Residual in linear system iterative methods      60 63 65
Residual methods for ODEs      719 721
Rice, J.R.      111
Richardson method, diffusion equation      611—612
Richardson method, parabolic PDEs      611
Richardson, L.F.      611
Richtmyer method      see “Lax — Wendroff two-step method”
Richtmyer, R.D.      665 668
Rocket, vertical flight of      328—329 336—337 396 398—400
Romberg integration      297—299
Root finding      see “Nonlinear equations roots
Roots of nonlinear equations      see “Nonlinear equations roots
Roots of polynomials      see “Polynomials roots
Roots, types of      133
Round-off effect on difference tables      210
Round-off error      5 52—54 351—352
Rounding, effects of      210
Row operations for linear systems      28 32
Row operations for linear systems, elimination      28
Row operations for linear systems, pivoting      28
Row operations for linear systems, scaling      28
Row vector      22
Runge — Kutta methods      370—378
Runge — Kutta methods, basic concept      370—371
Runge — Kutta methods, error control      376—378
Runge — Kutta methods, error estimation      376—378
Runge — Kutta methods, fourth-order method      372—376
Runge — Kutta methods, fourth-order method, program for      408—410
Runge — Kutta methods, Runge — Kutta — Fehlberg method      377—378
Runge — Kutta methods, Runge — Kutta — Merson method      421
Runge — Kutta methods, second-order method      371—372
Runge — Kutta methods, third-order method      420
Runge — Kutta — Fehlberg method      377—378
Runge — Kutta — Merson method      421
Scaled pivoting      37—39
Scaling      37
Schnabel, R.B.      173
Secant method      see “Nonlinear equations roots
Secant to a curve      150
Shape functions for FEM      735 742—744 753
Shape functions for FEM, one-dimensional      726—727 735
Shape functions for FEM, two-dimensional      742—744
Sharp corner expansion applied problem      73
Shifted matrix      95
Shifted power method      95—101
Shifted power method for intermediate eigenvalues      97—99
Shifted power method for opposite extreme eigenvalue      95—97
Shifted power method to accelerate convergence      99—101
Shifting eigenvalues      95
Shooting method for boundary-value ODEs      see “ODEs Boundary-value shooting
Significant digits      4
Similarity transformations      104
Simple elimination      35
Simple root      133—134
Simpson’s 1/3 rule      293—295
Simpson’s 3/8 rule      295—296
Simultaneous linear algebraic equations      see “Systems of linear algebraic equations”
Single-point methods      364—378
Single-point methods, error estimation for      376—377
Single-point methods, fourth-order Runge — Kutta method      372—376
Single-point methods, implicit midpoint method      364—365
Single-point methods, implicit trapezoid method      368
Single-point methods, modified Euler method      368—370
Single-point methods, modified midpoint method      365—368
Single-point methods, modified trapezoid method      368
Single-point methods, Runge — Kutta methods      370—376
Single-point methods, second-order methods      364—370
Single-point methods, second-order Runge — Kutta method      371—372
Single-step methods for ODEs      364
Single-value methods for ODEs      364
Singular determinant      30
Singular matrix      30
Size of a matrix      22
Smith, B.T. et al.      111
Smoothly varying problems      350
Smoothness      350
Smoothness, nonsmoothly varying problems      350
Smoothness, smoothly varying problems      350
software packages      6—7
Software packages, Excel      6
Software packages, Macsyma      6
Software packages, Maple      6
Software packages, Mathcad      6
Software packages, Mathematica      6
Software packages, Matlab      7
Solutions Manual      4
SOR      see “Systems of linear algebraic equations SOR”
Source terms      324 503
Southwell, R.V      64
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå