Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hoffman J.D. — Numerical Methods for Engineers and Scientists
Hoffman J.D. — Numerical Methods for Engineers and Scientists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Numerical Methods for Engineers and Scientists

Àâòîð: Hoffman J.D.

Àííîòàöèÿ:

Hoffman (mechanical engineering, Purdue U.) introduces engineers and scientists to numerical methods that can be used to solve mathematical problems arising in engineering and science that cannot be solved by exact methods. His general approach is to introduce a type of problem, present sufficient background to understand the problem and possible methods of solving it, develop one or more numerical methods, and illustrate the methods with examples. He include bad methods as well as good to clarify why some work and some do not. He has significantly revised the first edition, published by McGraw-Hill in 1992, and added a new section with several FORTRAN programs for implementing the algorithms developed.Copyright © 2004 Book News, Inc., Portland, OR


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 823

Äîáàâëåíà â êàòàëîã: 23.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Multivariate interpolation      218—220
Multivariate interpolation, direct multivariate polynomial      220
Multivariate interpolation, least squares polynomials      231—233
Multivariate interpolation, successive univariate polynomials      218—220
Multivariate polynomials      218—220
Multivariate polynomials, direct multivariate polynomials      220
Multivariate polynomials, least squares polynomials      231—233
Multivariate polynomials, successive univariate polynomials      218—220
NAG      7
Nested multiplication algorithm      194 195—196
NETLIB      7
Neumann boundary conditions for boundary-value ODEs      441
Neumann boundary conditions for PDEs      524
Neville’s algorithm      201—204
Newton backward-difference polynomial      213—215
Newton backward-difference polynomial, differentiation of      261—262
Newton backward-difference polynomial, error of      215
Newton backward-difference polynomial, example      214—215
Newton backward-difference polynomial, fitting      213—214
Newton backward-difference polynomial, interpolation with      214—215
Newton forward-difference polynomial      257—261
Newton forward-difference polynomial, differentiation of      257—261
Newton forward-difference polynomial, error of      213
Newton forward-difference polynomial, example      212—213
Newton forward-difference polynomial, fitting      211—212
Newton forward-difference polynomial, integration of      290—291
Newton forward-difference polynomial, interpolation with      212—213
Newton forward-difference polynomial, program for      239
Newton — Cotes formulas      290—297
Newton — Cotes formulas, coefficients, table of      297
Newton — Cotes formulas, definition of      290
Newton — Cotes formulas, derivation of      290—297
Newton — Raphson method      see “Nonlinear equations roots Newton’s
Newton’s Law of Cooling      330
Newton’s method for nonlinear implicit FDEs      394—396
Newton’s method for nonlinear, boundary-value problems      474—477
Newton’s method for roots of nonlinear equations      see “Nonlinear equations roots Newton’s
Newton’s method for systems of nonlinear equations      170—173 444
Newton’s second law of motion in eigenproblems      81
Newton’s second law of motion, dynamic spring-mass system      81
Newton’s second law of motion, flight of a rocket      329
Newton’s second law of motion, fluid mechanics      520
Nicolson, P.      619
Nodal equations, FEM, boundary-value ODE      736 738
Nodal equations, FEM, diffusion equation      758
Nodal equations, FEM, Laplace (Poisson) equation      750
Nonbracketing methods      129 133 140—155
Nonconformable matrices      25
Nonhomogeneous, ordinary differential equations      325
Nonhomogeneous, partial differential equation      503
Nonhomogeneous, partial differential equation, elliptic      570—571
Nonhomogeneous, partial differential equation, hyperbolic      682
Nonhomogeneous, partial differential equation, parabolic      625—627
Nonhomogeneous, partial differential equations      504
Nonhomogeneous, system of linear algebraic equations      19
Nonlinear boundary-value problems      471—477
Nonlinear differential equations, ordinary differential equation      324
Nonlinear equations, Numerical examples      137—138 139—140 142—144 147—148 151—152 154—155 158—159 159—160 161—162 162—163 166—167 171—172
Nonlinear equations, roots of      Chapter 3 127—186
Nonlinear equations, roots of, Aitken’s acceleration method      145
Nonlinear equations, roots of, Bairstow’s method      164—167
Nonlinear equations, roots of, behavior of nonlinear equations      132—135
Nonlinear equations, roots of, bisection method      see “Interval halving”
Nonlinear equations, roots of, bounding roots      130—133
Nonlinear equations, roots of, Brent’s method      169
Nonlinear equations, roots of, closed domain methods      135—140
Nonlinear equations, roots of, comparison of Newton’s method and the secant method      104
Nonlinear equations, roots of, example problem      127—129
Nonlinear equations, roots of, false position      138—140
Nonlinear equations, roots of, fixed-point iteration      141—145
Nonlinear equations, roots of, fixed-point iteration, convergence rate      144—145
Nonlinear equations, roots of, fixed-point iteration, error analysis      144—145
Nonlinear equations, roots of, four-bar linkage example      127—129
Nonlinear equations, roots of, general features of      130—135
Nonlinear equations, roots of, general philosophy of root finding      135
Nonlinear equations, roots of, Graeff’s method      169
Nonlinear equations, roots of, graphing the function      131—132
Nonlinear equations, roots of, incremental search      132
Nonlinear equations, roots of, interval halving      135—138
Nonlinear equations, roots of, introduction to      127—130
Nonlinear equations, roots of, Jenkins — Traub method      169
Nonlinear equations, roots of, Laguerre’s method      169
Nonlinear equations, roots of, Lehmer — Schur method      169
Nonlinear equations, roots of, Muller’s method      141 152—155
Nonlinear equations, roots of, Newton’s method      140 146—150
Nonlinear equations, roots of, Newton’s method for polynomials      158—163
Nonlinear equations, roots of, Newton’s method, approximate method      149
Nonlinear equations, roots of, Newton’s method, complex roots      162—163
Nonlinear equations, roots of, Newton’s method, convergence rate      148—149
Nonlinear equations, roots of, Newton’s method, error analysis      148—149
Nonlinear equations, roots of, Newton’s method, lagged method      149
Nonlinear equations, roots of, open domain methods      140—155
Nonlinear equations, roots of, packages      179
Nonlinear equations, roots of, pitfalls of root finding      167—169
Nonlinear equations, roots of, polishing roots      149 157
Nonlinear equations, roots of, polynomials      155—167
Nonlinear equations, roots of, programs for      173—179
Nonlinear equations, roots of, quotient-difference (QD) method      169
Nonlinear equations, roots of, refining roots      133
Nonlinear equations, roots of, regula falsi      see “False position method”
Nonlinear equations, roots of, secant method      150—152
Nonlinear equations, roots of, secant method, convergence rate      152
Nonlinear equations, roots of, Steffensen’s method      145
Nonlinear equations, roots of, summary      179—181
Nonlinear equations, roots of, systems of nonlinear equations      169—173
Nonlinear equations, systems of      169—173
Nonlinear first-order initial-value ODE      338 341—343
Nonlinear first-order initial-value ODE, linearization of      342
Nonlinear functions, least squares fit      234
Nonlinear implicit finite difference equations, boundary-value ODEs      393—396
Nonlinear implicit finite difference equations, boundary-value, Newton’s method      394—396
Nonlinear implicit finite difference equations, boundary-value, time linearization      393—394
Nonlinear implicit finite difference equations, elliptic PDEs      570—571
Nonlinear implicit finite difference equations, elliptic PDEs, iteration method      570
Nonlinear implicit finite difference equations, elliptic PDEs, Newton’s method      571
Nonlinear implicit finite difference equations, hyperbolic PDEs      682
Nonlinear implicit finite difference equations, parabolic PDEs      625—627
Nonlinear implicit finite difference equations, parabolic PDEs, iteration      626
Nonlinear implicit finite difference equations, parabolic PDEs, Newton’s method      626
Nonlinear second-order boundary-value ODEs      438 440
Nonrectangular domains      562—570
Nonrectangular domains, approximate physical boundaries      563
Nonrectangular domains, cylindrical coordinates      563
Nonrectangular domains, nonuniform FDAs      563—568
Nonrectangular domains, spherical coordinates      563
Nonrectangular domains, transformed spaces      563 566 568—570
Nonsmoothly varying problems      350
Nonsymmetrical difference formulas      269—270
Nonuniform FDAs      563—568
Nonuniform grids, boundary value ODEs      477—480
Nonuniform grids, finite element method      731 758
Nonuniform grids, nonequally spaced FDAs      477—478
Nonuniform grids, solution on a nonuniform grid      477—480
Nonuniform grids, transformed uniform grid      477
Normal equations (least squares), higher-degree polynomials      228—230
Normal equations (least squares), multivariate polynomials      232
Normal equations (least squares), straight line      227
Norms      55—58
Norms, definition of      56
Norms, matrix      56
Norms, scalar      56
Norms, vector      56
Notation      see “Index notation”
Number representation      5
Numbers      5
Numerical differentiation      Chapter 5 251—284
Numerical differentiation, centered differences      260—261 262 263 268
Numerical differentiation, difference formulas      262—264 270—271
Numerical differentiation, direct fit polynomials      255—256
Numerical differentiation, divided difference polynomials      255—256
Numerical differentiation, equally spaced data      257—264 276—278
Numerical differentiation, error estimation      270 272
Numerical differentiation, example      253
Numerical differentiation, extrapolation      270 272
Numerical differentiation, introduction to      251—254
Numerical differentiation, Lagrange polynomials      255—256
Numerical differentiation, Newton backward-difference polynomial      261—262
Numerical differentiation, Newton forward-difference polynomial      257—261
Numerical differentiation, numerical examples      256—257 259—260 261 264 268 269—270 272
Numerical differentiation, numerical methods, difference formulas      262—264 271
Numerical differentiation, numerical methods, direct fit polynomial      255—256
Numerical differentiation, numerical methods, divided difference polynomial      255—257
Numerical differentiation, numerical methods, known functions      252
Numerical differentiation, numerical methods, Lagrange polynomial      255—256
Numerical differentiation, numerical methods, Newton backward-difference polynomial      261—262
Numerical differentiation, numerical methods, Taylor series approach      264—270
Numerical differentiation, one-sided differences      258 262 263 268
Numerical differentiation, order of approximation      259 267
Numerical differentiation, packages      278—279
Numerical differentiation, programs for      273—278
Numerical differentiation, space derivatives      264—268
Numerical differentiation, summary      279
Numerical differentiation, Taylor series approach      264—270
Numerical differentiation, time derivatives      268—269
Numerical differentiation, truncation error      267
Numerical differentiation, unequally spaced data      254—257 273—276
Numerical diffusion      664—665
Numerical dispersion      664—665
Numerical information propagation speed      455 456
Numerical integration      Chapter 6 285—321
Numerical integration, adaptive integration      299—302
Numerical integration, composite formulas      292 294 296
Numerical integration, direct fit polynomials      288—289
Numerical integration, equally spaced data      288—289 290—297
Numerical integration, error control      297—298
Numerical integration, error estimation      297—298
Numerical integration, error, global (total)      292 294 296
Numerical integration, error, local      292 294 296
Numerical integration, example      287
Numerical integration, extrapolation      297—299
Numerical integration, Gaussian quadrature      302—306
Numerical integration, Gaussian quadrature, table of parameters      304
Numerical integration, higher-order Newton-Cotes formulas      296—297
Numerical integration, increment      291
Numerical integration, interval      291
Numerical integration, introduction to      16 285—288
Numerical integration, know functions      286
Numerical integration, multiple integrals      306—310
Numerical integration, Newton — Cotes formulas      290—297
Numerical integration, nonequally spaced data      288—289
Numerical integration, numerical examples      289 292—293 294—295 298—299 300—301 304—306 306—310
Numerical integration, numerical methods, adaptive      299—302
Numerical integration, numerical methods, direct fit polynomial      288—289
Numerical integration, numerical methods, extrapolation      297—299
Numerical integration, numerical methods, Gaussian quadrature      302—306
Numerical integration, numerical methods, multiple integrals      306—310
Numerical integration, numerical methods, Newton forward-difference polynomials      290—297
Numerical integration, numerical methods, Newton — Cotes formulas      290—297
Numerical integration, numerical methods, Romberg integration      297—299
Numerical integration, numerical methods, Simpson’s 1/3 rule      293—295
Numerical integration, numerical methods, Simpson’s 3/8 rule      295—296
Numerical integration, numerical methods, trapezoid rule      291—293
Numerical integration, packages      315
Numerical integration, programs for      310—315
Numerical integration, quadrature      285
Numerical integration, range of integration      291
Numerical integration, rectangle rule      290—291
Numerical integration, Romberg integration      297—299
Numerical integration, Simpson’s 1/3 rule      293—295
Numerical integration, Simpson’s 3/8 rule      295—296
Numerical integration, summary      315—316
Numerical integration, tabular data      286
Numerical integration, trapezoid rule      291—293
Objective of the book      1
ODE, acronym ODE      323
ODE, boundary-value      435—499
ODE, definition of      323
ODE, initial-value      335—433
ODE, stable      341
ODE, unstable      341
ODEs      Part II 323—333
ODEs, auxiliary conditions      324 325
ODEs, boundary value      Chapter 8 435—499
ODEs, boundary value, boundary conditions      441
ODEs, boundary value, boundary conditions at infinity      441 465—466
ODEs, boundary value, definition of      323 330—332
ODEs, boundary value, derivative BCs, equilibrium method      461—464
ODEs, boundary value, derivative BCs, example problem      458—459
ODEs, boundary value, derivative BCs, shooting method      459—461
ODEs, boundary value, Dirichlet boundary conditions      441
ODEs, boundary value, eigenproblems      480—482
ODEs, boundary value, equilibrium method      438 450—458
ODEs, boundary value, equilibrium method, boundary condition at infinity      463—466
ODEs, boundary value, equilibrium method, boundary condition at infinity, asymptotic solution      466
ODEs, boundary value, equilibrium method, boundary condition at infinity, finite domain      465—466
ODEs, boundary value, equilibrium method, boundary conditions      441
ODEs, boundary value, equilibrium method, compact three-point fourth-order method      467—471
ODEs, boundary value, equilibrium method, consistency      450
ODEs, boundary value, equilibrium method, convergence      450
ODEs, boundary value, equilibrium method, derivative boundary conditions      461—464
ODEs, boundary value, equilibrium method, eigenproblems      480—482
ODEs, boundary value, equilibrium method, eigenproblems, approximate eigenvalues      481—482
ODEs, boundary value, equilibrium method, eigenproblems, exact eigenvalues      480—481
ODEs, boundary value, equilibrium method, eigenproblems, example      481—482
ODEs, boundary value, equilibrium method, extrapolation      453—454
ODEs, boundary value, equilibrium method, finite difference approximations      450
ODEs, boundary value, equilibrium method, finite difference grids      450—451
ODEs, boundary value, equilibrium method, five-point fourth-order method      466—467
ODEs, boundary value, equilibrium method, higher-order methods      466—471
ODEs, boundary value, equilibrium method, mixed boundary condition      464
ODEs, boundary value, equilibrium method, nonlinear boundary-value problems      471—477
ODEs, boundary value, equilibrium method, nonlinear boundary-value problems, iteration      471—474
ODEs, boundary value, equilibrium method, nonlinear boundary-value problems, Newton’s method      474—477
ODEs, boundary value, equilibrium method, numerical examples      451—458 462—464 470—471 473—480
ODEs, boundary value, equilibrium method, numerical methods, compact fourth-order method      467—471
ODEs, boundary value, equilibrium method, numerical methods, extrapolation      453—454
ODEs, boundary value, equilibrium method, numerical methods, five-point fourth-order method      469
ODEs, boundary value, equilibrium method, numerical methods, second-order method      450—453
ODEs, boundary value, equilibrium method, order      450
ODEs, boundary value, equilibrium method, second-order boundary-value problem      450—451
ODEs, boundary value, equilibrium method, summary      488—490
ODEs, boundary value, exact solution of      440 455
ODEs, boundary value, example problem      436—437 455
ODEs, boundary value, general features of      439—441
ODEs, boundary value, higher-order ODEs      440
ODEs, boundary value, introduction to      436—439
ODEs, boundary value, linear second-order ODE      439
ODEs, boundary value, linearization of      472
ODEs, boundary value, mixed boundary conditions      441
ODEs, boundary value, Neumann boundary conditions      441
ODEs, boundary value, nonlinear second-order ODE      438 440 471—477
ODEs, boundary value, nonuniform grids      477—480
ODEs, boundary value, packages      488
ODEs, boundary value, programs for      483—488
ODEs, boundary value, shooting method      438 441—449
ODEs, boundary value, shooting method by iteration      444—447
ODEs, boundary value, shooting method, advantages of      488
ODEs, boundary value, shooting method, boundary condition at infinity      465—466
ODEs, boundary value, shooting method, boundary condition at infinity, asymptotic solution      466
ODEs, boundary value, shooting method, boundary condition at infinity, finite domain      465—466
ODEs, boundary value, shooting method, boundary conditions      441
ODEs, boundary value, shooting method, concept      441—442
ODEs, boundary value, shooting method, consistency      442
ODEs, boundary value, shooting method, convergence      442
ODEs, boundary value, shooting method, derivative boundary conditions      458—461 464—466
ODEs, boundary value, shooting method, disadvantages of      489
ODEs, boundary value, shooting method, extrapolation      448—449
ODEs, boundary value, shooting method, fourth-order Runge — Kutta method      446—447
ODEs, boundary value, shooting method, higher-order methods      466
ODEs, boundary value, shooting method, higher-order ODEs      449
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå