Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hoffman J.D. — Numerical Methods for Engineers and Scientists
Hoffman J.D. — Numerical Methods for Engineers and Scientists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Numerical Methods for Engineers and Scientists

Àâòîð: Hoffman J.D.

Àííîòàöèÿ:

Hoffman (mechanical engineering, Purdue U.) introduces engineers and scientists to numerical methods that can be used to solve mathematical problems arising in engineering and science that cannot be solved by exact methods. His general approach is to introduce a type of problem, present sufficient background to understand the problem and possible methods of solving it, develop one or more numerical methods, and illustrate the methods with examples. He include bad methods as well as good to clarify why some work and some do not. He has significantly revised the first edition, published by McGraw-Hill in 1992, and added a new section with several FORTRAN programs for implementing the algorithms developed.Copyright © 2004 Book News, Inc., Portland, OR


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 823

Äîáàâëåíà â êàòàëîã: 23.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Direct fit multivariate polynomials      220
Direct fit polynomials      197—198
Direct fit polynomials, differentiation of      255—257
Direct fit polynomials, error of      198
Direct fit polynomials, fitting      197—198
Direct fit polynomials, integration of      288—289
Direct fit polynomials, interpolation with      197—198
Direct fit polynomials, programs for      235—236
Direct method for eigenvalues      101—104
Direct methods for systems of linear algebraic equations      see “Systems of linear algebraic equations”
Direct power method for eigenvalues      90—91
Dirichlet BCs, ODEs      441
Dirichlet BCs, PDEs      524
Discrete perturbation stability analysis      607
Discriminant of conic sections      505
Discriminant of PDEs      505
Discriminant of the convection-diffusion equation      523
Discriminant of the diffusion equation      519
Discriminant of the Laplace equation      517
Discriminant of the wave equation      522
Discriminant of two coupled convection equations      510
Dispersion, numerical      see “Implicit numerical dispersion”
Dissipation function      503
Distributive property of matrices      26
Diverging solution of ODEs      351
Divided difference      204
Divided difference polynomials      206—208
Divided difference polynomials, differentiation of      255—257
Divided difference polynomials, error of      207—208
Divided difference polynomials, fitting      206
Divided difference polynomials, interpolation with      207—208
Divided difference polynomials, program for      238
Divided difference, definition of      204
Divided difference, operator      204
Divided difference, table      204—206
Division algorithm for polynomials      194
Domain discretization for the finite element method, one-dimensional      726 753
Domain discretization for the finite element method, two-dimensional      740—742
Domain of dependence of differential equations, convection equation      506
Domain of dependence of differential equations, definition of      508
Domain of dependence of differential equations, diffusion equation      520
Domain of dependence of differential equations, elliptic PDEs      508 512 518 531
Domain of dependence of differential equations, hyperbolic PDEs      508 528 655 657
Domain of dependence of differential equations, Laplace equation      518
Domain of dependence of differential equations, parabolic PDEs      508 520 592 593
Domain of dependence of differential equations, wave equation      523
Domain of dependence, numerical of explicit methods      595 657
Domain of dependence, numerical of implicit methods      595
Domains, closed for ODEs      327
Domains, closed for PDEs      511
Domains, open for ODEs      327
Domains, open for PDEs      512
Doolittle LU factorization method      45—48
Doolittle LU factorization method for matrix inverse      48
Doolittle LU factorization method in eigenproblems      93—95
DOUBLE PRECISION      5
Douglas, J.      618 627 628
Drag coefficient      329
DuFort — Frankel method      613
DuFort, E.C.      613
d’Alembert solution of the wave equation      683—684
Eigenproblems      chapter 2 81—125
Eigenproblems for boundary-value ODEs      327 480—482
Eigenproblems for boundary-value ODEs, approximate eigenvalues      481—482
Eigenproblems for boundary-value ODEs, exact eigenvalues      480—481
Eigenproblems in PDEs      515—516
Eigenproblems, basic characteristics of      81—85
Eigenproblems, basis of power method      91—92
Eigenproblems, Boundary-value ODEs      480—482
Eigenproblems, Boundary-value ODEs, approximate eigenvalues      481—482
Eigenproblems, Boundary-value ODEs, exact eigenvalues      480—481
Eigenproblems, Boundary-value ODEs, example      481—482
Eigenproblems, characteristic equation for      87 88
Eigenproblems, classical form      87
Eigenproblems, Cramer’s rule      85—86
Eigenproblems, definition of      83—84
Eigenproblems, deflation techniques      111
Eigenproblems, direct method      101—104
Eigenproblems, direct method, linear eigenproblems      102—103
Eigenproblems, direct method, nonlinear eigenproblems      103—104
Eigenproblems, direct power method      90—91
Eigenproblems, Doolittle LU method for inverse power method      93
Eigenproblems, example of      81—84
Eigenproblems, illustration of      84—85
Eigenproblems, introduction to      81—85
Eigenproblems, inverse power method      92—95
Eigenproblems, largest eigenvalue      90—92
Eigenproblems, mathematical characteristics of      85—89
Eigenproblems, nonlinear eigenproblems      101—104
Eigenproblems, Numerical examples      90—91 94—104 107—109 110—111
Eigenproblems, other methods      111
Eigenproblems, packages      118
Eigenproblems, PDEs      514—515
Eigenproblems, power method      89—104
Eigenproblems, programs for      112—118
Eigenproblems, programs for direct power method      112—114
Eigenproblems, programs for inverse power method      115—118
Eigenproblems, QR method      104—109
Eigenproblems, shifting eigenvalues      95—101
Eigenproblems, shifting eigenvalues for intermediate eigenvalues      97—99
Eigenproblems, shifting eigenvalues for opposite extreme eigenvalues      95—97
Eigenproblems, shifting eigenvalues to accelerate convergence      99—101
Eigenproblems, smallest eigenvalue      95—96
Eigenproblems, summary      101
Eigenproblems, unity component      90 92
Eigenvalues      see “Eigenproblems”
Eigenvalues of ODEs      327 480—482
Eigenvalues of ODEs, approximate      481—482
Eigenvalues of ODEs, exact      480—481
Eigenvalues, characteristic equation for      87 88
Eigenvalues, definition of      13 83 84 87
Eigenvalues, example of      81—84 84—85
Eigenvectors, definition of      13 83 84 88
Eigenvectors, determination of      88 110—111
Eigenvectors, unity component of      90 92 110
EISPACK      111 118
Electric circuit applied problems      431—432
Element equations, FEM      724 735 748 756
Element equations, FEM, boundary-value ODEs      737
Element equations, FEM, diffusion equation      756
Element equations, FEM, Laplace (Poisson) equation      748
Elementary row operations      32
Elements, FEM      724
Elements, FEM, one-dimensional      724—725
Elements, FEM, rectangular      740—741
Elements, FEM, trapezoidal      740—741
Elements, FEM, triangular      740—741
Elimination      32—39
Elimination methods      see “Systems of linear algebraic equations”
Elliptic PDEs      see “Laplace (Poisson) equation”
Elliptic PDEs, consistency      544—545
Elliptic PDEs, convergence      545—546
Elliptic PDEs, definition of      505
Elliptic PDEs, Laplace equation      516
Elliptic PDEs, multidimensional problems      571
Elliptic PDEs, nonlinear equations      570—571
Elliptic PDEs, packages      580
Elliptic PDEs, Poisson equation      518
Elliptic PDEs, programs for      575—580
Elliptic PDEs, summary      580—581
Elliptic PDEs, the finite difference method for      532—536
energy equation      520
Equally spaced data, differentiation of      257—264
Equally spaced data, fitting polynomials to      208—216
Equally spaced data, integration of      290—299
Equally spaced data, interpolation of      208—216
Equations, algebraic      see “Systems of linear algebraic equations”
Equations, Colebrook      186
Equations, convection      526 652—653 655—656
Equations, convection-diffusion      523—524 526 629—637
Equations, diffusion      512—514 519—520 524 587—591 599—626
Equations, Fourier’s law of conduction      330 516 529 571
Equations, Laplace      502 516—518 526 528 530 536—552
Equations, least squares normal      227 229 232
Equations, linear      see “Systems of linear algebraic equations”
Equations, Newton’s law of cooling      330
Equations, Poisson      503 518 530 552—557
Equations, Stefan — Boltzmann law of radiation      328
Equations, van der Waal      185
Equations, wave      653 683—691
Equilibrium method for boundary-value ODEs      438 450—458
Equilibrium method for boundary-value ODEs, advantages of      489
Equilibrium method for boundary-value ODEs, derivative BCs      461—464
Equilibrium method for boundary-value ODEs, disadvantages of      489
Equilibrium method for boundary-value ODEs, extrapolation      453—454
Equilibrium method for boundary-value ODEs, higher-order ODEs      466—471
Equilibrium method for boundary-value ODEs, nonlinear problems, iteration      471—474
Equilibrium method for boundary-value ODEs, nonlinear problems, Newton’s method      474—477
Equilibrium method for boundary-value ODEs, second-order ODE      450—453
Equilibrium problems, ODEs      326—327 437
Equilibrium problems, PDEs      511—512 516—519
Equivalence theorem for ODEs      363
Equivalence theorem for PDEs      610
Error control for ODEs      see “Error estimation for ODE methods”
Error estimation for numerical approximations for difference formulas      272
Error estimation for numerical approximations of numerical algorithms      270 272
Error estimation for ODE methods, fourth-order Adams — Bashforth — Moulton method      390—391
Error estimation for ODE methods, multipoint methods      390—391
Error estimation for ODE methods, Runge — Kutta — Fehlberg method      377—378
Error estimation for ODE methods, single-point methods      376
Error propagation      351—352
Error term, polynomial      192
Error term, Taylor polynomial      8 192
Errors      5 62
Errors in the solution of ODEs      351—352
Errors in the solution of ODEs, absolute error      62
Errors in the solution of ODEs, algebraic errors      351
Errors in the solution of ODEs, global      292 294 296
Errors in the solution of ODEs, inherited error      352
Errors in the solution of ODEs, initial data errors      351
Errors in the solution of ODEs, local      292 294 296 297
Errors in the solution of ODEs, relative error      62
Errors in the solution of ODEs, round-off error      352
Errors in the solution of ODEs, truncation error      351
Errors, absolute      62
Errors, approximation      5
Errors, iteration      5
Errors, relative      62
Errors, round-off      5
Euclidean norm of a matrix      56
Euclidean norm of a vector      56
Euclidean norm of errors in ODE solutions      446—447
Euler equation in calculus of variations      714
Euler’s explicit method      see “Explicit Euler method”
Euler’s implicit method      see “Implicit Euler method”
Euler’s modified method      see “Modified Euler method”
Evaluation of polynomials      194—198
Exact fits      189—190
Exact solution notation      347 442 534 597 658
Exact solutions, boundary-value ODEs      436—437
Exact solutions, convection equation      652—653 656
Exact solutions, convection-diffusion equation      630—632
Exact solutions, diffusion equation      587—589
Exact solutions, initial-value ODEs      336 398
Exact solutions, Laplace equation      528—530
Exact solutions, linear first-order ODE      340—341
Exact solutions, linear second-order ODE      440
Exact solutions, Poisson equation      553—554
Excel      6 75
Exercise problems, definition of      4
Explicit Euler method      352—355
Explicit Euler method as predictor      368—370
Explicit Euler method for stiff ODEs      403—404
Explicit Euler method, comparison with implicit Euler method      357—359
Explicit Euler method, consistency      360—361
Explicit Euler method, convergence      363
Explicit Euler method, order      353 361
Explicit Euler method, stability of      363
Explicit method, definition of      350 355
Explicit methods, hyperbolic PDEs      657
Explicit methods, initial-value ODEs      350
Explicit methods, parabolic PDEs      594
Extrapolated modified midpoint method      378—381
Extrapolated modified midpoint method, Bulirsch — Stoer method      381
Extrapolated modified midpoint method, comparison with Runge — Kutta method      380—381
Extrapolated modified midpoint method, concept      378
Extrapolated modified midpoint method, program for      410—412
Extrapolation of boundary-value ODE solutions      448—449
Extrapolation of difference formulas      272
Extrapolation of initial-value ODE solutions      378—381
Extrapolation of integration formulas      297—299
Extrapolation of Laplace equation solutions      561—562
Extrapolation of numerical algorithms      270 272
Extremization      714
Factor theorem for polynomials      194
Fadeev, D.K.      111
Fadeeva, YN.      111
False position method      135 138—140
FDA, acronym      347
FDE, acronym      350
Fehlberg method      see “Runge — Kutta — Fehlberg method”
Fehlberg, E.      377
FEM, acronym      724
Ferziger, J.H.      628
Finite difference approximations for boundary-value ODEs      450—451
Finite difference approximations for elliptic PDEs      534—536
Finite difference approximations for hyperbolic PDEs      658—659
Finite difference approximations for initial-value ODEs      347—349
Finite difference approximations for parabolic PDEs      597—598
Finite difference equations, elliptic PDEs      536
Finite difference equations, explicit      350
Finite difference equations, hyperbolic PDEs      658—659
Finite difference equations, implicit      350
Finite difference equations, introduction to ODEs      349—350
Finite difference equations, parabolic PDEs      599
Finite difference grids for boundary-value ODEs      450—451
Finite difference grids for elliptic PDEs      533—534
Finite difference grids for hyperbolic PDEs      658
Finite difference grids for initial-value ODEs      346—347
Finite difference grids for parabolic PDEs      596
Finite difference method for ODEs, approximate solution      348
Finite difference method for ODEs, exact solution      347
Finite difference method for ODEs, finite difference approximations      347—349
Finite difference method for ODEs, finite difference equations      349—350
Finite difference method for ODEs, finite difference grids      346—347
Finite difference method for PDEs, elliptic PDEs      532—536
Finite difference method for PDEs, hyperbolic PDEs      657—659
Finite difference method for PDEs, parabolic PDEs      593—599
Finite difference stencil, definition of      537
Finite difference stencils, convection equation, BTCS FDE      678
Finite difference stencils, convection equation, FTCS FDE      660
Finite difference stencils, convection equation, Lax FDE      662
Finite difference stencils, convection equation, Lax — Wendroff one-step FDE      666
Finite difference stencils, convection equation, Lax — Wendroff two-step FDEs      669
Finite difference stencils, convection equation, MacCormack FDEs      672
Finite difference stencils, convection equation, upwind (first order) FDE      673
Finite difference stencils, convection equation, upwind (second-order) FDE      676
Finite difference stencils, convection-diffusion equation, BTCS FDE      635
Finite difference stencils, convection-diffusion equation, FTCS FDE      633
Finite difference stencils, diffusion equation, BTCS FDE      614
Finite difference stencils, diffusion equation, Crank — Nicolson FDE      620
Finite difference stencils, diffusion equation, derivative BC      624
Finite difference stencils, diffusion equation, FTCS FDE      599
Finite difference stencils, diffusion equation, Richardson FDE      611
Finite difference stencils, Laplace (Poisson) equation, compact fourth-order FDE      559
Finite difference stencils, Laplace (Poisson) equation, control volume method      574
Finite difference stencils, Laplace (Poisson) equation, derivative BC      552
Finite difference stencils, Laplace (Poisson) equation, five-point FDE      537
Finite difference stencils, Laplace (Poisson) equation, nonuniform grid      564
Finite element method      Chapter 12 711—773
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå