Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hoffman J.D. — Numerical Methods for Engineers and Scientists
Hoffman J.D. — Numerical Methods for Engineers and Scientists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Numerical Methods for Engineers and Scientists

Àâòîð: Hoffman J.D.

Àííîòàöèÿ:

Hoffman (mechanical engineering, Purdue U.) introduces engineers and scientists to numerical methods that can be used to solve mathematical problems arising in engineering and science that cannot be solved by exact methods. His general approach is to introduce a type of problem, present sufficient background to understand the problem and possible methods of solving it, develop one or more numerical methods, and illustrate the methods with examples. He include bad methods as well as good to clarify why some work and some do not. He has significantly revised the first edition, published by McGraw-Hill in 1992, and added a new section with several FORTRAN programs for implementing the algorithms developed.Copyright © 2004 Book News, Inc., Portland, OR


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 823

Äîáàâëåíà â êàòàëîã: 23.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Interpolation, Newton backward-difference polynomial      213—215
Interpolation, Newton forward-difference polynomial      211—213
Interpolation, Stirling centered-difference polynomial      216
Interpolation, successive univariate polynomials      218—220
Interpolation, summary      242—243
Interval halving method      135—138
Interval, in numerical integration      291
Introduction      Chapter 0 1—9
Introduction to basic tools of numerical analysis      11—16
Introduction to boundary-value ODEs      436—439
Introduction to eigenproblems      81—85
Introduction to elliptic PDEs      527—531
Introduction to hyperbolic PDEs      651—655
Introduction to initial-value ODEs      336—340
Introduction to interpolation      188—190
Introduction to nonlinear equations, roots of      127—130
Introduction to numerical differentiation      251—254
Introduction to numerical integration      285—288
Introduction to ODEs      323—333
Introduction to parabolic PDEs      587—591
Introduction to PDEs      501—502
Introduction to polynomial approximation      188—190
Introduction to systems of linear algebraic equations      18—21
Introduction to the book      1—10
Introduction to the finite element method      711—713
Inverse interpolation      217—218
Inverse of a matrix      26—27
Inverse of a matrix, evaluation by Doohttle LU factorization      48
Inverse of a matrix, evaluation by Gauss — Jordan elimination      42
Inverse power method for eigenvalues      92—95
Iteration error      5
Iteration for systems of linear algebraic equations      59—67
Iteration, BTCS approximation of the diffusion equation      626
Iteration, nonlinear boundary-value problems      471—474
Iterative improvement      58—59
Iterative methods      20
Iterative methods for eigenvalues      see “Eigenproblems”
Iterative methods for systems of linear algebraic equations      59—67
Iterative methods for systems of linear algebraic equations, accuracy      62
Iterative methods for systems of linear algebraic equations, convergence      62—63
Iterative methods for systems of linear algebraic equations, Gauss — Seidel iteration      63—64
Iterative methods for systems of linear algebraic equations, Jacobi iteration      59—61
Iterative methods for systems of linear algebraic equations, over-relaxation factor      65—65
Iterative methods for systems of linear algebraic equations, successive-over-relaxation (SOR)      64—67
Iterative methods for the Laplace equation      543
Jacobi iteration      59—61
Jacobi method for eigenvalues      111
Jeeves, T.A.      152
Jenkins — Traub method      169
Jury problem      511
Lagged Newton’s method      149
Lagrange polynomials      198—204
Lagrange polynomials, differentiation of      255
Lagrange polynomials, fitting      199
Lagrange polynomials, interpolation with      200—201
Lagrange polynomials, Neville’s algorithm      201—204
Lagrange polynomials, program for      237
Laguerre’s method      169
Languages      see “Programming languages”
LAPACK      7
Laplace equation      502 512 516 526 528 530 Chapter
Laplace equation, boundary conditions      531
Laplace equation, coefficient matrix size      543
Laplace equation, compact fourth-order method      557—561
Laplace equation, consistency      544—545
Laplace equation, control volume method      571—575
Laplace equation, convergence      545—546
Laplace equation, convergence criteria      547
Laplace equation, derivative BCs      550—553
Laplace equation, direct methods      537—541
Laplace equation, exact problem      528—530
Laplace equation, example problem      528—530
Laplace equation, extrapolation      561—562
Laplace equation, finite difference approximations      534—535
Laplace equation, finite difference grids      533—534
Laplace equation, finite element method (FEM)      712—713 740—752
Laplace equation, five-point method      536—537
Laplace equation, Gauss — Seidel method      546—548
Laplace equation, grid aspect ratio      536
Laplace equation, higher-order methods      557—562
Laplace equation, initial guess, effect of      549—550
Laplace equation, introduction to      527—531
Laplace equation, iterative methods      546—550
Laplace equation, nonhomogeneous      see “Poisson equation”
Laplace equation, nonrectangular domain      562—570
Laplace equation, numerical examples      540—542 547—548 549—550 552—553 559—561 561—562 565—568 574—575
Laplace equation, numerical methods, compact fourth-order method      557—561
Laplace equation, numerical methods, control volume method      571—575
Laplace equation, numerical methods, finite element method      740—752
Laplace equation, numerical methods, five-point method      536—537
Laplace equation, numerical methods, Gauss — Seidel method      546—548
Laplace equation, numerical methods, iterative methods      546—550
Laplace equation, numerical methods, SOR method      548—550
Laplace equation, numerical methods, successive-over-relaxation method      548—550
Laplace equation, operation count      542—543
Laplace equation, order      537
Laplace equation, over-relaxation factor      548—549
Laplace equation, over-relaxation factor, optimum      549
Laplace equation, packages      580
Laplace equation, programs for      575—580
Laplace equation, residual      546 548
Laplace equation, solution domain      532—534
Laplace equation, SOR method      548—550
Laplace equation, successive-over-relaxation (SOR) method      548—550
Laplace equation, summary      580—581
Laplace equation, system equation      540
Laplace equation, three-dimensional problems      571
Laplacian operator      503
Lax equivalence theorem      610 615 620 634 636 662
Lax method      659—664
Lax method, amplification factor      660
Lax method, finite difference equation      659
Lax method, modified differential equation      662
Lax method, numerical solution using      663
Lax method, stability analysis      662
Lax — Wendroff (Richtmyer) two-step method      668—670
Lax — Wendroff (Richtmyer) two-step method, finite difference equations      668
Lax — Wendroff (Richtmyer) two-step method, finite difference stencil      669
Lax — Wendroff (Richtmyer) two-step method, numerical example      669—670
Lax — Wendroff one-step method      665—668
Lax — Wendroff one-step method, convection equation      665—668
Lax — Wendroff one-step method, convection equation, amplification factor G      666
Lax — Wendroff one-step method, convection equation, finite difference equation      666
Lax — Wendroff one-step method, convection equation, finite difference stencil      666
Lax — Wendroff one-step method, convection equation, modified differential equation      666
Lax — Wendroff one-step method, convection equation, numerical example      667—668
Lax — Wendroff one-step method, convection equation, stability analysis      666—667
Lax — Wendroff one-step method, wave equation      687—690
Lax — Wendroff one-step method, wave equation, amplification matrix G      688
Lax — Wendroff one-step method, wave equation, finite difference equations      688
Lax — Wendroff one-step method, wave equation, modified differential equation      688
Lax — Wendroff one-step method, wave equation, numerical example      689—690
Lax — Wendroff one-step method, wave equation, stability analysis      688—689
Lax — Wendroff type methods      665—673
Lax — Wendroff type methods, Lax — Wendroff (Richtmyer) two-step method      668—670
Lax — Wendroff type methods, Lax — Wendroff one-step method      665—668
Lax — Wendroff type methods, MacCormack method      670—673
Lax, P.D.      610 661 665 668 687
Leapfrog method      611—613
Least squares approximation      225—234
Least squares approximation, deviations      225
Least squares approximation, examples      227—228 230—231 232—233
Least squares approximation, higher-degree polynomials      228—231
Least squares approximation, introduction to      225—227
Least squares approximation, multivariate polynomials      231—233
Least squares approximation, nonlinear functions      234
Least squares approximation, normal equations      227
Least squares approximation, program for      240—241
Least squares approximation, straight line      227—228
Lehmer — Schur method      169
Lewy, H.      662
Libraries, software      6—7
Libraries, software, GAMS      7
Libraries, software, IMSL      7
Libraries, software, LAPACK      7
Libraries, software, NAG      7
Libraries, software, NETLIB      7
Linear differential equations, first-order initial-value ODE      340—341
Linear differential equations, ordinary differential equations      324
Linear differential equations, partial differential equations      503
Linear differential equations, second-order boundary-value ODE      439—440
Linear element in FEM      727
Linear equations      see “Systems of linear algebraic equations”
Linear systems      see “Systems of linear algebraic equations”
Linearization of nonlinear ODEs      342 361—362
Linearization of nonlinear PDEs      626—627
LINPACK      75
Lower triangular matrix      23
LU factorization      27 45—48
LU factorization, Crout method      45
LU factorization, Doolittle method      46—48
MacCormack method      670—673
MacCormack method, finite difference equations      671
MacCormack method, finite difference stencil      672
MacCormack method, numerical example      672
MacCormack, R.W      665 670
Machine accuracy      62
Machine vibration applied problem      431
Maclaurin series      8
Macsyma      6 75 179 241 488
Major diagonal of a matrix      23
Maple      6 75 179 242 413 488
Mastin, C.W.      570
Mathcad      6 131 179 241 413 488
Mathematica      6 75 179 241 413 488
MATLAB      7 131 179 241 413 488
Matrices      21—28
Matrices, addition      24
Matrices, associative property of      24
Matrices, augmented matrix      35—36
Matrices, banded matrix      24
Matrices, block tridiagonal matrix      52
Matrices, commutative property of      25
Matrices, conformable matrices      25
Matrices, definition of      22—24
Matrices, deflation      111
Matrices, determinant of      28—30
Matrices, determinants      see “Determinants”
Matrices, diagonal matrix      23
Matrices, diagonally dominant      24
Matrices, distributive property of      26
Matrices, division      24
Matrices, elementary algebra      24—27
Matrices, elementary properties of      21—27
Matrices, factorization      27
Matrices, identity matrix      23
Matrices, ill conditioned matrix      54—55
Matrices, inverse matrix      26—27
Matrices, inverse matrix by Doolittle LU method      48
Matrices, inverse matrix by Gauss — Jordan elimination      42
Matrices, lower triangular matrix      23
Matrices, LU factorization      27 45—48
Matrices, major diagonal      23
Matrices, multiplication      24
Matrices, nonsingular      30
Matrices, notation      22
Matrices, numerical examples      25—26
Matrices, partitioned      27
Matrices, QR factorization      104—107
Matrices, row operations      28
Matrices, singular      30
Matrices, size      22
Matrices, sparse matrix      24
Matrices, square matrix      23
Matrices, subtraction      24
Matrices, symmetric matrix      24
Matrices, systems of linear algebraic equations      27—28
Matrices, transpose matrix      24
Matrices, triangular matrix      23
Matrices, tridiagonal matrix      24 49—52
Matrices, unity matrix      23
Matrices, upper triangular matrix      23
Matrix deflation      111
Matrix method of stability analysis      607
Matrix notation      22
Matrix partitioning      27
McDonald, A.T.      521
MDE, acronym      544 605
MDEs for ODEs      360—361
MDEs for PDEs      544
MDEs, convection equation      660 662 666 673 676 679
MDEs, convection-diffusion equation      633 636
MDEs, definition of      360 544
MDEs, diffusion equation      606 613 615 620 625
MDEs, Laplace equation      544—545
MDEs, wave equation      688
Merson method      see “Runge — Kutta — Merson method”
Midpoint method      364—365
Minimax criterion      226
Mixed boundary conditions, boundary-value ODEs      441 464
Mixed boundary conditions, boundary-value ODEs, equilibrium method      464
Mixed boundary conditions, boundary-value ODEs, shooting method      464
Mixed boundary conditions, PDEs      523
Mixed elliptic/hyperbolic problems      637—639
Mixed elliptic/parabolic problems      637—639
Mode of oscillation      83 88
Model equations, ODE stability analysis      362
Model equations, PDEs      524—525
Model equations, stiff ODE      402—403
Modified differential equation      see “MDE”
Modified Euler method      368—370
Modified Euler method, consistency      368
Modified Euler method, example      369—370
Modified Euler method, order      369
Modified Euler method, stability      369
Modified midpoint method      365—368
Modified midpoint method, consistency      365—366
Modified midpoint method, example      366—368
Modified midpoint method, order      366
Modified midpoint method, stability      366
Momentum equation      see “Newton’s second law of motion”
Mop up      391
Muller, D.E.      152 169
Muller’s method      141 152—155
Muller’s method, convergence rate of      155
Multidimensional approximation      see “Multivariate approximation”
Multidimensional interpolation      see “Multivariate interpolation”
Multidimensional problems, elliptic PDEs      571
Multidimensional problems, hyperbolic PDEs      682—683
Multidimensional problems, parabolic PDEs      627—629
Multigrid method      571 580
Multiple b vectors      36
Multiple integrals      306—310
Multiple root      133—134
Multipoint methods for ODEs      381—391
Multipoint methods for ODEs, Adams FDEs      383
Multipoint methods for ODEs, Adams — Bashforth FDEs      383
Multipoint methods for ODEs, Adams — Bashforth — Moulton FDEs      383
Multipoint methods for ODEs, Adams — Moulton FDEs      383
Multipoint methods for ODEs, concept      381—383
Multipoint methods for ODEs, explicit Adams — Bashforth FDEs      388—389
Multipoint methods for ODEs, explicit multipoint methods      382
Multipoint methods for ODEs, fourth-order Adams — Bashforth method      383—384
Multipoint methods for ODEs, fourth-order Adams — Bashforth — Moulton method      386 387—388
Multipoint methods for ODEs, fourth-order Adams — Moulton method      385
Multipoint methods for ODEs, general Adams methods      388—390
Multipoint methods for ODEs, implicit Adams — Moulton FDEs      389—390
Multipoint methods for ODEs, implicit multipoint methods      382—383
Multistep methods for ODEs      382
Multivalue methods for ODEs      382
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå