Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hoffman J.D. — Numerical Methods for Engineers and Scientists
Hoffman J.D. — Numerical Methods for Engineers and Scientists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Numerical Methods for Engineers and Scientists

Àâòîð: Hoffman J.D.

Àííîòàöèÿ:

Hoffman (mechanical engineering, Purdue U.) introduces engineers and scientists to numerical methods that can be used to solve mathematical problems arising in engineering and science that cannot be solved by exact methods. His general approach is to introduce a type of problem, present sufficient background to understand the problem and possible methods of solving it, develop one or more numerical methods, and illustrate the methods with examples. He include bad methods as well as good to clarify why some work and some do not. He has significantly revised the first edition, published by McGraw-Hill in 1992, and added a new section with several FORTRAN programs for implementing the algorithms developed.Copyright © 2004 Book News, Inc., Portland, OR


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 823

Äîáàâëåíà â êàòàëîã: 23.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Finite element method for boundary-value problems      438 724—740
Finite element method for the diffusion equation      752—759
Finite element method for the Laplace (Poisson) equation      740—752
Finite element method, boundary-value ODEs      438 724—740
Finite element method, boundary-value ODEs, assembly      736 738
Finite element method, boundary-value ODEs, boundary conditions      738—739
Finite element method, boundary-value ODEs, domain discretization      726
Finite element method, boundary-value ODEs, element equations      728 735 737
Finite element method, boundary-value ODEs, functional      727
Finite element method, boundary-value ODEs, Galerkin weighted residual approach      734—739
Finite element method, boundary-value ODEs, interpolating polynomials      726—727 735
Finite element method, boundary-value ODEs, nodal equation      728 731 736 738
Finite element method, boundary-value ODEs, numerical examples      731—732 732—733 739
Finite element method, boundary-value ODEs, Rayleigh — Ritz approach      727—734
Finite element method, boundary-value ODEs, shape functions      726—727 735
Finite element method, boundary-value ODEs, steps in      725—726
Finite element method, boundary-value ODEs, system equation      728
Finite element method, boundary-value ODEs, weighted residual integral      734
Finite element method, boundary-value ODEs, weighting factors      734 735
Finite element method, diffusion equation      752—759
Finite element method, diffusion equation, assembly      756—757
Finite element method, diffusion equation, domain discretization      753
Finite element method, diffusion equation, element equations      756
Finite element method, diffusion equation, Galerkin weighted residual approach      754—758
Finite element method, diffusion equation, interpolating polynomials      753—754
Finite element method, diffusion equation, nodal equations      758
Finite element method, diffusion equation, numerical example      758—759
Finite element method, diffusion equation, shape functions      753—754
Finite element method, diffusion equation, weighted residual integral      754
Finite element method, diffusion equation, weighting factors      755
Finite element method, Galerkin method      721—723
Finite element method, introduction to      711—713
Finite element method, Laplace (Poisson) equation      740—752
Finite element method, Laplace (Poisson) equation, assembly      748—750
Finite element method, Laplace (Poisson) equation, domain discretization      740—742
Finite element method, Laplace (Poisson) equation, element equation      748
Finite element method, Laplace (Poisson) equation, Galerkin weighted residual approach      744—750
Finite element method, Laplace (Poisson) equation, interpolating polynomials      742
Finite element method, Laplace (Poisson) equation, nodal equation      750
Finite element method, Laplace (Poisson) equation, numerical examples      750—752
Finite element method, Laplace (Poisson) equation, shape functions      742—744
Finite element method, Laplace (Poisson) equation, weighted residual integral      744
Finite element method, Laplace (Poisson) equation, weighting factors      746
Finite element method, packages      769
Finite element method, programs for      759—769
Finite element method, Rayleigh — Ritz method      714—719
Finite element method, summary      769—770
First law of thermodynamics      520
Five-point approximation of the Laplace equation      536—543
Fix, G.J.      713
Fixed point      141
Fixed-point iteration      140 141—145
Fixed-point iteration, convergence rate of      144—145
Flannery, B.P.      see “Press W.H.”
Flow problems      430—431
Flux-vector-splitting method      690—691
Forcing function      324 503
Forsythe, G.E.      545
FORTRAN      3
Forward substitution      46
Forward-difference, definition of      208
Forward-difference, operator      208
Forward-difference, table      209
Forward-time centered-space method      see “FTCS method”
Four-bar linkage      127—129
Four-bar linkage applied problems      185
Fourier components      608
Fourier series      608
Fourier’s law of conduction      330 516 529 571
Fourth-order methods for ODEs, Adams — Bashforth method      383—387
Fourth-order methods for ODEs, Adams — Bashforth — Moulton method      383—388
Fourth-order methods for ODEs, Adams — Moulton method      385—388
Fourth-order methods for ODEs, extrapolated modified midpoint method      378—381
Fourth-order methods for ODEs, Gear method      407
Fourth-order methods for ODEs, Runge — Kutta method      373—376
Fox, R.W      519
Frankel, S.R      549 613
Frequency of oscillation, natural      82 88
Freudenstein, F.      128
Freudenstein’s equation      128
Friction coefficient applied problems      185—186 430—431
Friedrichs, K.O.      662
FTCS method, amplification factor      609
FTCS method, convection number      660
FTCS method, diffusion number      599
FTCS method, finite difference equation      659
FTCS method, hyperbolic PDEs      659—661
FTCS method, modified differential equation      660
FTCS method, multidimensional problems      605
FTCS method, nonlinear PDEs      604
FTCS method, numerical information propagation speed      604
FTCS method, numerical solution      661
FTCS method, parabolic PDEs      599—605
FTCS method, parametric studies      600—605
FTCS method, stability analysis      660
FTCS, acronym      599 659
Fully implicit method      614 678
Function subprogram      3
Functional      714 725
Fundamental function      714
Fundamental function, Rayleigh — Ritz method      714
Fundamental theorem of algebra      156
Galerkin method      438
Galerkin weighted residual approach, FEM for boundary-value ODEs,      734—739
Galerkin weighted residual approach, FEM for boundary-value ODEs, assembly      736
Galerkin weighted residual approach, FEM for boundary-value ODEs, domain discretization      726
Galerkin weighted residual approach, FEM for boundary-value ODEs, element equations      735
Galerkin weighted residual approach, FEM for boundary-value ODEs, examples      731—733
Galerkin weighted residual approach, FEM for boundary-value ODEs, interpolating polynomial      735
Galerkin weighted residual approach, FEM for boundary-value ODEs, nodal equation      736 738
Galerkin weighted residual approach, FEM for boundary-value ODEs, shape functions      735
Galerkin weighted residual approach, FEM for boundary-value ODEs, weighted residual integral      734
Galerkin weighted residual approach, FEM for boundary-value ODEs, weighting factors      734 735
Galerkin weighted residual approach, FEM for diffusion equation      752—759
Galerkin weighted residual approach, FEM for diffusion equation, assembly      756—758
Galerkin weighted residual approach, FEM for diffusion equation, domain discretization      753
Galerkin weighted residual approach, FEM for diffusion equation, element equations      756
Galerkin weighted residual approach, FEM for diffusion equation, examples      758—759
Galerkin weighted residual approach, FEM for diffusion equation, interpolating polynomials      753—754
Galerkin weighted residual approach, FEM for diffusion equation, nodal equation      758
Galerkin weighted residual approach, FEM for diffusion equation, shape functions      753
Galerkin weighted residual approach, FEM for diffusion equation, weighted residual integral      754
Galerkin weighted residual approach, FEM for diffusion equation, weighting factors      755
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation      740—752
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, assembly      748—756
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, domain discretization      740—742
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, element equations      748
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, examples      750—752
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, interpolating polynomials      740—744
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, nodal equation      750
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, shape functions      742—744
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, weighted residual integral      744
Galerkin weighted residual approach, FEM for Laplace (Poisson) equation, weighting factors      746
Galerkin weighted residual method, boundary-value ODE      721—723
Galerkin weighted residual method, steps in      721—722
Galerkin weighted residual method, weighted residual integral      722
Galerkin weighted residual method, weighted residuals      721
Galerkin weighted residual method, weighting functions      721
GAMS      7
Gauss elimination      see “Systems of linear algebraic equations”
Gauss — Jordan elimination      see “Systems of linear algebraic equations”
Gauss — Seidel iteration      see “Systems of linear algebraic equations”
Gauss — Seidel method for the Laplace equation      546—548
Gaussian quadrature      see “Numerical integration Gaussian
Gear method for stiff ODEs      407—408
Gear, C.W.      402 407
General features of boundary-value ODEs      330—332 439—441
General features of elliptic PDEs      531—532
General features of hyperbolic PDEs      655—657
General features of initial-value ODEs      327—330 340—343
General features of ODEs      323—325
General features of parabolic PDEs      591—593
General features of PDEs      502—504 516
General linear first-order initial-value ODE      340—341
General linear second-order boundary-value ODE      438 439—140
General nonlinear first-order initial-value ODE      341—342
General nonlinear second-order boundary-value ODE      438 440
General quasilinear first-order nonhomogeneous PDE      504 508
General quasilinear second-order nonhomogeneous PDE      504
General second-order algebraic equation      505
General system of quasilinear first-order nonhomogeneous PDEs      504
Generalized coordinate transformations      566—570
Genereaux equation      186
Genereaux, R.R.      186
Gerald, C.F.      165 222
Given method for eigenvalues      111
Graeff’s root squaring method      169
Gragg, W.      378
Gram — Schmidt process      105
Graphing the solution      130—132
Grid aspect ratio      536 549
Grid lines      596
Grid points      596
Gunn, J.E.      628
Hackbush, W      571
Hadamard, J.      525
Hamilton’s principle      723
Heat conduction      see “Heat diffusion”
Heat convection      330
Heat diffusion problem, one-dimensional      444—449 451—454
Heat diffusion problem, one-dimensional, boundary-value ODE      436—437
Heat diffusion problem, one-dimensional, compact three-point fourth-order method      470—471
Heat diffusion problem, one-dimensional, derivative BCs      458—461 462—464
Heat diffusion problem, one-dimensional, equilibrium method      451—454
Heat diffusion problem, one-dimensional, example problem      436—437
Heat diffusion problem, one-dimensional, shooting method      444—449
Heat diffusion problem, two-dimensional      536—543
Heat diffusion problem, two-dimensional, compact fourth-order method      557—561
Heat diffusion problem, two-dimensional, control volume method      571—575
Heat diffusion problem, two-dimensional, derivative BCs      550—552
Heat diffusion problem, two-dimensional, example problem      527—530
Heat diffusion problem, two-dimensional, five-point method      547—548 549—550
Heat diffusion with internal energy generation      552—556
Heat diffusion, Fourier’s law of conduction      330 516 529 571
Heat diffusion, governing equation      512 516—517
Heat diffusion, Laplace (Poisson) equation for      552—556
Heat diffusion, steady one-dimensional      330 436—437
Heat diffusion, steady two-dimensional      516—517 527—530
Heat diffusion, unsteady one-dimensional      519—520 587—589
Heat radiation      see “Stefan — Boltzmann equation”
Heat transfer applied problems      429—430 498
Heat transfer coefficient      330
Heat transfer problem      see “Heat diffusion problem”
Heat transfer rate      541
Henrici, P.K.      158 169
Hessenberg matrix      111
Heun method      368
High-degree polynomial approximation, cubic splines      221—223
High-degree polynomial approximation, direct fit      197
High-degree polynomial approximation, divided difference      204—205
High-degree polynomial approximation, Lagrange      199
High-degree polynomial approximation, least squares      228—231
High-degree polynomial approximation, Newton-backward-difference      213—214
High-degree polynomial approximation, Newton-forward-difference      211—212
Higher-order boundary-value ODEs      440
Higher-order boundary-value ODEs, solution by superposition      449
Higher-order boundary-value ODEs, solution by the equilibrium method      454—458
Higher-order boundary-value ODEs, solution by the shooting method      449
Higher-order equilibrium methods, boundary-value ODEs      466—471
Higher-order equilibrium methods, boundary-value ODEs, compact three-point fourth-order, method      467—471
Higher-order equilibrium methods, boundary-value ODEs, five-point fourth-order method      467
Higher-order methods for the Laplace (Poisson) equation, compact fourth-order method      557—561
Higher-order methods for the Laplace (Poisson) equation, extrapolation      561—562
Higher-order methods for the Laplace (Poisson) equation, fourth-order centered-difference method      557
Higher-order Newton-Cotes formulas      296—297
Higher-order ODEs, boundary-value      449 454—458
Higher-order ODEs, initial-value      396—397
Higher-order PDEs      503
Hildebrand, F.B      158 169
Hoffman, ID      186 430 521
Homogeneous, ordinary differential equations      324
Homogeneous, partial differential equations      504
Homogeneous, systems of linear algebraic equations      19
Horner’s algorithm      194
Householder method for eigenvalues      111
Householder, A.S.      111 169
Hyett, B.J.      544
Hyperbolic PDEs      Chapter 11 651—709
Hyperbolic PDEs, convection equation      see “Convection equation”
Hyperbolic PDEs, definition of      505
Hyperbolic PDEs, finite difference method for      657—659
Hyperbolic PDEs, general features of      514—515 655—657
Hyperbolic PDEs, introduction to      651—655
Hyperbolic PDEs, multidimensional problems      682—683
Hyperbolic PDEs, nonlinear equation      682
Hyperbolic PDEs, packages      701
Hyperbolic PDEs, programs for      691—701
Hyperbolic PDEs, summary      701—702
Hyperbolic PDEs, wave equation      see “Wave equation”
Hyperspace      505
Hypersurface      505
Identity matrix      23
Ill-conditioned polynomial      157
Ill-conditioned problem      54
Ill-conditioned system of equations      52—55
Implicit Euler method      355—357
Implicit Euler method for stiff ODEs      403—406
Implicit Euler method, comparison with explicit Euler method      357—359
Implicit Euler method, Newton’s method for      356
Implicit Euler method, order      356
Implicit Euler method, stability of      363
Implicit FDE, definition of      350 355
Implicit methods for PDEs, hyperbolic PDEs      657
Implicit methods for PDEs, parabolic PDEs      594 611—623
Implicit numerical diffusion      664—665
Implicit numerical dispersion      664—665
IMSL      7 75 111 169 179 241 413 488
Inconsistent set of equations      19
Increment, in numerical integration      291
Incremental search      130 132
Index notation, dependent variable      596
Index notation, grid point      596
Index notation, independent variable      596
Information propagation speed for hyperbolic PDEs      655
Information propagation speed for parabolic PDEs      594
Information propagation speed, numerical      595 657
Information propagation speed, physical      655 656
Inherited error      351
Initial values for ordinary differential equations      325
Initial values for partial differential equations      524—525
Initial values, initial-value problems      see “ODEs initial-value”
Instability, numerical of finite difference approximations of ODEs      361—363
Instability, numerical of finite difference approximations of propagation type PDEs      606—610
Instability, numerical, explicit Euler method      358—359
Integration of polynomials      193
Integration, numerical      see “Numerical integration”
Intermediate eigenvalues      95
Interpolating functions for the FEM      725
Interpolating polynomials for the FEM      726—727 735 740—744 753—754
Interpolating polynomials for the FEM, one-dimensional      753—754
Interpolating polynomials for the FEM, two-dimensional      742
Interpolation      see “Polynomial approximation”
Interpolation, Bessel centered-difference polynomial      216
Interpolation, cubic splines      221—225
Interpolation, direct fit polynomial      197—198
Interpolation, divided difference polynomial      206—208
Interpolation, inverse      217—218
Interpolation, Lagrange polynomial      198—204
Interpolation, least square      225—234
Interpolation, multivariate polynomials      218—220
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå