Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hoffman J.D. — Numerical Methods for Engineers and Scientists
Hoffman J.D. — Numerical Methods for Engineers and Scientists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Numerical Methods for Engineers and Scientists

Àâòîð: Hoffman J.D.

Àííîòàöèÿ:

Hoffman (mechanical engineering, Purdue U.) introduces engineers and scientists to numerical methods that can be used to solve mathematical problems arising in engineering and science that cannot be solved by exact methods. His general approach is to introduce a type of problem, present sufficient background to understand the problem and possible methods of solving it, develop one or more numerical methods, and illustrate the methods with examples. He include bad methods as well as good to clarify why some work and some do not. He has significantly revised the first edition, published by McGraw-Hill in 1992, and added a new section with several FORTRAN programs for implementing the algorithms developed.Copyright © 2004 Book News, Inc., Portland, OR


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/×èñëåííûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 823

Äîáàâëåíà â êàòàëîã: 23.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
ODEs, boundary value, shooting method, mixed boundary condition      464
ODEs, boundary value, shooting method, nonlinear boundary-value problem      471
ODEs, boundary value, shooting method, numerical examples      444—447 447—448 448—449 460—461
ODEs, boundary value, shooting method, order      442
ODEs, boundary value, shooting method, second-order boundary-value ODE      442—449
ODEs, boundary value, shooting method, second-order shooting method      444—448
ODEs, boundary value, shooting method, stability      442
ODEs, boundary value, shooting method, summary      488—490
ODEs, boundary value, shooting method, superposition of solutions      447—448
ODEs, boundary value, summary      441 488—490
ODEs, boundary value, systems of ODEs      441
ODEs, boundary-value ODEs      325 330—332
ODEs, boundary-value, shooting method, numerical methods, extrapolation      448—449
ODEs, boundary-value, shooting method, numerical methods, implicit trapezoid method      444—447
ODEs, boundary-value, shooting method, numerical methods, modified Euler method      444
ODEs, boundary-value, shooting method, numerical methods, Runge — Kutta method      446—447
ODEs, classification of ODEs      325—326
ODEs, classification of ODEs, boundary-value      325
ODEs, classification of ODEs, initial-value      326
ODEs, closed domain      326
ODEs, constant coefficient      324
ODEs, derivative function      324
ODEs, eigenproblems      327
ODEs, equilibrium problems      327
ODEs, examples, heat conduction      330—331
ODEs, examples, heat radiation      328—329
ODEs, examples, laterally loaded beam      331—332
ODEs, examples, rocket flight      329—330
ODEs, families of solutions      325
ODEs, forcing function      324
ODEs, general features of      323—325
ODEs, general first-order ODE      325 333
ODEs, general second-order ODE      325 333
ODEs, homogeneity      324—325
ODEs, initial value, numerical methods, Adams methods      383
ODEs, initial value, numerical methods, Adams — Bashforth method      383—385 388—389
ODEs, initial value, numerical methods, Adams — Bashforth — Moulton method      387—388
ODEs, initial value, numerical methods, Adams — Moulton method      385—386 389—390
ODEs, initial value, numerical methods, Bulirsch — Stoer method      381
ODEs, initial value, numerical methods, explicit Euler method      352—355
ODEs, initial value, numerical methods, explicit Euler method, comparison to implicit Euler method      357—359
ODEs, initial value, numerical methods, extrapolated modified midpoint method      378—381
ODEs, initial value, numerical methods, extrapolation methods      378—381
ODEs, initial value, numerical methods, Gear’s methods      407—408
ODEs, initial value, numerical methods, Heun method      368
ODEs, initial value, numerical methods, implicit Euler method      355—357
ODEs, initial value, numerical methods, implicit Euler method, comparison to explicit Euler method      357—359
ODEs, initial value, numerical methods, implicit midpoint method      365
ODEs, initial value, numerical methods, implicit trapezoid method      368
ODEs, initial value, numerical methods, modified Euler method      368—370
ODEs, initial value, numerical methods, modified midpoint method      365—368
ODEs, initial value, numerical methods, modified trapezoid method      368
ODEs, initial value, numerical methods, multipoint methods      381—391
ODEs, initial value, numerical methods, predictor-corrector methods      249—251 383—388
ODEs, initial value, numerical methods, Runge — Kutta methods      370—376
ODEs, initial value, numerical methods, single-point methods      364—378
ODEs, initial value, numerical methods, summary      414—416
ODEs, initial value, numerical methods, systems of ODEs      397—400
ODEs, initial value, numerical methods, Taylor series method      343—346
ODEs, initial-value      Chapter 7 335—433
ODEs, initial-value ODEs      325 327—330
ODEs, initial-value, consistency      349 359—361 364
ODEs, initial-value, convergence      360 363 364
ODEs, initial-value, definition of      323 327—330
ODEs, initial-value, derivative function      338
ODEs, initial-value, equivalence theorem for convergence      363
ODEs, initial-value, error control      390—391
ODEs, initial-value, error estimation      390—391
ODEs, initial-value, errors      351—352
ODEs, initial-value, exact solution of      340 341
ODEs, initial-value, example problems      327—330 336—338 398
ODEs, initial-value, extrapolation      390—391
ODEs, initial-value, extrapolation methods      378—381
ODEs, initial-value, families of solutions      341—342
ODEs, initial-value, finite difference approximations      347—349
ODEs, initial-value, finite difference equations      349—350
ODEs, initial-value, finite difference girds      346—347
ODEs, initial-value, finite difference method      346—352
ODEs, initial-value, general features of      340—343
ODEs, initial-value, general nonlinear first-order ODE      338
ODEs, initial-value, higher-order ODEs      342—343 396—397
ODEs, initial-value, higher-order ODEs, single-point methods      364—378
ODEs, initial-value, introduction to      327—330 336—340
ODEs, initial-value, linear first-order ODE      340—341
ODEs, initial-value, multipoint methods      381—391
ODEs, initial-value, multistep methods      382
ODEs, initial-value, multivalue methods      382
ODEs, initial-value, nonlinear first-order ODE      341—342
ODEs, initial-value, nonlinear implicit FDEs      383—396
ODEs, initial-value, nonlinear implicit FDEs, Newton’s method      394—396
ODEs, initial-value, nonlinear implicit FDEs, time linearization      393—394
ODEs, Initial-value, numerical examples      344—346 354—355 356—357 366—368 369—370 374—376 379—381 387—388 393—394 395 398—400 403 404—405
ODEs, initial-value, order      359—361 364
ODEs, initial-value, packages      413
ODEs, initial-value, programs for      408—413
ODEs, initial-value, single-point methods      364—378
ODEs, initial-value, single-step methods      364
ODEs, initial-value, single-value methods      364
ODEs, initial-value, smoothness      350
ODEs, initial-value, stability      360 361—363 364
ODEs, initial-value, stiff ODEs      400—408
ODEs, initial-value, summary      343 414—416
ODEs, initial-value, summary of methods      391—393
ODEs, initial-value, summary of results      391—393
ODEs, initial-value, systems of      343 397—400
ODEs, introduction to      323 330—332
ODEs, linear      324
ODEs, nonlinear      324
ODEs, open domain      325
ODEs, order of      324
ODEs, physical problem classification      326—327
ODEs, physical problem classification, eigenproblems      327
ODEs, physical problem classification, equilibrium      326—327
ODEs, physical problem classification, propagation      326—327
ODEs, propagation problems      327
ODEs, source term      324
ODEs, summary      332—333
ODEs, systems of ODEs      325
ODEs, time-like coordinate      327
ODEs, time-like direction      327
ODEs, variable coefficient      324
One-dimensional boundary-value problems      see “ODEs boundary
One-dimensional initial-value problems      see “ODEs initial
One-sided difference formulas      268
Open domain for ODEs      326
Open domain for PDEs      512 513
Open domain methods      see “Nonlinear equations roots
Opposite extreme eigenvalue      95—97
Optimum over-relaxation factor      65—67
Optimum over-relaxation factor for five-point method      549—550
Optimum over-relaxation factor, effect of grid aspect ratio on      549
Order of difference formulas      267
Order of FDAs of boundary-value ODEs      442 450
Order of FDAs of elliptic PDEs      535 545
Order of FDAs of initial-value ODEs      359—361
Order of FDAs of parabolic PDEs      605—606
Order of ODEs      324
Order of PDEs      503
Ordinary differential equations      see “ODEs”
Organization of the book      2
Over-relaxation      see “Successive-over-relaxation”
Over-relaxation factor      65—67
Over-relaxation factor for the five-point method      548—550
Over-relaxation factor, optimum value of      65—67 549
Overshoot      358
Packages, boundary-value ODEs      488
Packages, eigenproblems      118
Packages, elliptic PDEs      580
Packages, finite element method      769
Packages, hyperbolic PDEs      701
Packages, initial-value ODEs      413
Packages, nonlinear equation, roots of      179
Packages, numerical differentiation      278—279
Packages, numerical integration      315
Packages, parabolic PDEs      645
Packages, polynomial approximation      241—242
Packages, systems of linear algebraic equations      118
Parabolic PDEs      Chapter 10 587—650
Parabolic PDEs, asymptotic steady-state solutions      637—639
Parabolic PDEs, backward-time centered-space (BTCS) method      614—619
Parabolic PDEs, consistency      605—606
Parabolic PDEs, convection-diffusion equation      522 629—637
Parabolic PDEs, convergence      610—111
Parabolic PDEs, Crank — Nicolson method      619—623
Parabolic PDEs, definition of      505
Parabolic PDEs, diffusion equation      519
Parabolic PDEs, forward-time centered-space (FTCS) method      599—605
Parabolic PDEs, general features of      512—515 591—593
Parabolic PDEs, introduction to      587—591
Parabolic PDEs, order      605—606
Parabolic PDEs, packages      645
Parabolic PDEs, programs for      639—645
Parabolic PDEs, stability      605—610
Parabolic PDEs, summary      645—646
Parabolic PDEs, the finite difference method for      593—599
Part I, basic tools of numerical analysis      11—16
Part II, ordinary differential equations      323—333
Part III, partial differential equations      501—526
Partial differential equations      see “PDEs”
Partial pivoting      36
Particular solution of ODEs      340—341 440
Pascal      3
Path of propagation      see “Propagation path”
Pathline      506 656
Pathline for the convection equation      506
Pathline for the convection-diffusion equation      522
PDE, acronym      501
PDEs      Part III 501—526:
PDEs, auxiliary conditions      524—525
PDEs, boundary conditions      524
PDEs, Cauchy problem      525
PDEs, characteristic curves (paths)      505—506 509 510 513 514 520 522 526
PDEs, characteristic equation      506 507 520 522
PDEs, classification of PDEs      504—511
PDEs, classification of physical problems      511—516
PDEs, closed domain      511
PDEs, compatibility equation      507
PDEs, complex characteristics      510
PDEs, conic sections      505
PDEs, convection equation      see “Convection equation”
PDEs, convection-diffusion equation      see “Convection-diffusion equation”
PDEs, definition of PDE      502
PDEs, diffusion equation      see “Diffusion equation”
PDEs, Dirichlet BC      524
PDEs, discontinuous derivatives      506—507
PDEs, discriminant of PDEs      505 510 517 519 522 523
PDEs, domain of dependence      508
PDEs, domain of dependence, elliptic PDEs      508 512 518 531
PDEs, domain of dependence, hyperbolic PDEs      508 523 655 657
PDEs, domain of dependence, parabolic PDEs      508 520 592 593
PDEs, eigenproblems      515—516
PDEs, elliptic PDEs      505 516—519
PDEs, equilibrium problems      511
PDEs, examples of convection equation      see Chapter 11
PDEs, examples of convection-diffusion equation      see Chapter 10
PDEs, examples of diffusion equation      see Chapter 10
PDEs, examples of Laplace (Poisson) equation      see Chapter 9
PDEs, examples of wave equation      see Chapter 11
PDEs, examples, acoustic wave propagation      514—515 520—523
PDEs, examples, convection      506 521
PDEs, examples, steady heat diffusion      512 516—517
PDEs, examples, unsteady heat diffusion      513 519
PDEs, general features of      502—504
PDEs, general features, table of      516
PDEs, general quasilinear first-order PDE      504 508—509
PDEs, general quasilinear second-order PDE      504 507—508
PDEs, general system of quasilinear first-order PDEs      504 509—510
PDEs, homogeneity      503
PDEs, hyperbolic PDEs      505 511 520—523
PDEs, information propagation path      510 518 520 523
PDEs, information propagation speed      510 520 523
PDEs, initial values      524—525
PDEs, initial-value problem      512
PDEs, introduction to      501—502
PDEs, jury problem      511
PDEs, Laplace equation      see “Laplace (Poisson) equation”
PDEs, linear PDE      503
PDEs, mixed BC      524
PDEs, Neumann BC      524
PDEs, nonhomogeneous term      50
PDEs, nonlinear PDE      503
PDEs, open domain      512
PDEs, order of a PDE      503
PDEs, parabolic PDEs      505 511 519—520
PDEs, path of propagation      506 510—511
PDEs, pathline      506
PDEs, physical problem classification      511—516
PDEs, Poisson equation      see “Laplace (Poisson) equation”
PDEs, propagation problems      511 512—515
PDEs, range of influence      508
PDEs, range of influence, elliptic PDEs      509 510—511
PDEs, range of influence, hyperbolic PDEs      510 523
PDEs, range of influence, parabolic PDEs      510 520
PDEs, space-like coordinate      513
PDEs, substantial derivative      521
PDEs, summary      526
PDEs, systems of PDEs      504
PDEs, time-like coordinate      513
PDEs, types of PDEs      504—511
PDEs, variable coefficient      503
PDEs, wave equation      see “Wave equation”
PDEs, well posed problems      525
Peaceman, D.W      618 627
Peclet number      632
Pendulum applied problems      432
Physical information propagation speed      454 455
Physical problems governed by ODEs, classification of      326—327
Physical problems governed by ODEs, eigenproblems      326—327
Physical problems governed by ODEs, equilibrium problems      326—327
Physical problems governed by ODEs, propagation problems      326—327
Physical problems governed by PDEs      511—515
Physical problems governed by PDEs, classification of      511—515
Physical problems governed by PDEs, eigenproblems      514—515
Physical problems governed by PDEs, equilibrium problems      512
Physical problems governed by PDEs, propagation problems      512—514
Piecewise approximation for interpolation      221
Pitfalls of elimination methods      52—59
Pitfalls of root finding methods      150 167—169
Pivoting      36—37
Poisson equation      503 518 530 552—556
Poisson equation, five-point method for      554—555
Poisson equation, numerical example      555—556
Polishing roots      149 157
Polynomial approximation      Chapter 4 187—250
Polynomial approximation, approximate fits      189
Polynomial approximation, approximating functions      188—190
Polynomial approximation, Bessel polynomial      216
Polynomial approximation, cubic splines      221—225
Polynomial approximation, difference polynomials      211—216
Polynomial approximation, difference tables      208—210
Polynomial approximation, differentiation      251—284
Polynomial approximation, direct fit multivariate polynomials      218—220
Polynomial approximation, direct fit polynomials      197—198
Polynomial approximation, divided difference polynomials      204 206—208
Polynomial approximation, divided difference tables      204—206
Polynomial approximation, exact fits      189
Polynomial approximation, general features of      188—190
Polynomial approximation, integration      285—321
Polynomial approximation, interpolation      187—250
Polynomial approximation, introduction to      14 188—199
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå