Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.1
Bogachev V.I. — Measure Theory Vol.1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.1

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Singular measure      178
Singularity of measures      178
Sinitsyn I.N.      414
Sion M.      414 423 430
Skorohod (Skorokhod) A.V.      viii 413
Slutsky E.      171 426
Smiley M.F.      422
Smirnov V.I.      412 426 435
Smital J.      403
Smith H.J.S.      419
Smith H.L.      435
Smulian V.L.      282 434
Sobolev derivative      377
Sobolev inequality      377 378
Sobolev S.L.      325 376
Sobolev space      377
Sobolev V.I.      414
Sodnomov B.S.      87
Sohrab H.H.      414
Solovay R.      80
Soucek J.      379
Souslin M.      vii. viii 35 417 420
Souslin operation      36
Souslin scheme      36
Souslin scheme, monotone      36
Souslin scheme, regular      36
Souslin set      39 420
Space of measures      273
Space, $BMO(\mathbb{R}^n)$      373
Space, $l^p$      306
Space, Banach      249
Space, Banach, reflexive      281
Space, dual      256 262 281 283 311 313
Space, Euclidean      254
Space, Hilbert      255
Space, Lorentz      320
Space, measurable      4
Space, metric, complete      249
Space, metric, separable      252
Space, normed      249
Space, normed, complete      249
Space, normed, uniformly convex      284
Space, Orlicz      320
Space, probability      10
Space, Sobolev      377
Spiegel M.R.      414
Sprecher D.A.      414
Srinivasan T.P.      94 414 419 420
Staircase of Cantor      193
Stampacchia G.      160
Standard Gaussian measure      198
Steen P. van der      414
Stein E.M.      65 238 320 353 367 374 375 379 386 398 414 430 431 436
Steiner J.      212
Steiner’s symmetrization      212
Steinhaus H.      85 100 102 264 430 431
Stepanoff W.      438
Stieltjes      33 152
Stieltjes T.J.      33 152 416 425
Stolz O.      417
Stone M.H.      viii 411 423
Stromberg K.      81 325 402 414 435
Stroock D.W.      414
Structure      277
Structure, $\sigma$-complete      277
Structure, complete      277
Stute W.      413
Subadditivity      9
Subadditivity, countable      11
Sublinear function      67
Submeasure      75
Submeasure, Maharam      75
Submodular set function      75
Subramanian B.      310
Sucheston L.      435 438
Sudakov V.N.      318 434
Suetin P.K.      261
Sullivan D.      422
Sullivan J.A.      413
Sum Fejer      261
Sun Y.      237
Supermodular set function      75
Supremum      277
Surface measure      383
Surface measure on the sphere      238
Svetic R.E.      422
Swanson L.G.      91
Swartz Ch.W.      319 353 413 414 437
Symmetrization of Steiner      212
Sz.-Nagy B.      163 412 414
Szpilrajn E.      80 420
Szymanski W.      416
Table of sets      36
TagamLickii Ya.A.      321
Tagged interval      353
Tagged partition      354
Tagged partition, free      351
Talagrand M.      75 235
Tarski A.      81 422
Taylor A.E.      414 416 432
Taylor J.C.      414
Taylor S.J.      243 414
Teicher H.      413
Telvakovski T S.A.      415
Temple G.      414
Ter Horst H.J.      428
Theodorescu R.      431
Theorem, Baire      166
Theorem, Baire, category      89
Theorem, Banach — Alaoglu      283
Theorem, Banach — Steinhaus      264
Theorem, Banach — Tarski      81
Theorem, Beppo — Levi monotone convergence      130
Theorem, Besicovitch      361
Theorem, Bochner      220
Theorem, Carleson      260
Theorem, covering      361
Theorem, Denjoy — Young — Saks      370
Theorem, Dieudonne      viii
Theorem, differentiation      351
Theorem, Eberlein — Smulian      282
Theorem, Egoroff      110 426
Theorem, Fatou      131
Theorem, Fichtenholz      viii 271 433
Theorem, Fubini      183 185 209 336 409 429
Theorem, Gaposhkin      289 434
Theorem, Grothendieck      viii
Theorem, Hahn — Banach      67
Theorem, Komlos      290
Theorem, Krein — Milman      282
Theorem, Lebesgue on the Baire classes      149
Theorem, Lebesgue — Vitali      268
Theorem, Lebesgue, dominated convergence      130
Theorem, Lusin      115 426
Theorem, mean value, first      150
Theorem, mean value, second      150
Theorem, Miintz      305
Theorem, monotone class      33
Theorem, monotone class functional      146
Theorem, Nikodym      274
Theorem, Plancherel      237
Theorem, Radon — Nikodym      177 178 180 256 429
Theorem, Riemann — Lebesgue      274
Theorem, Riesz      112 256 262
Theorem, Riesz — Fischer      259
Theorem, Sard      239
Theorem, Scheffe      134 428
Theorem, Sierpiriski      48 421
Theorem, Tonelli      185
Theorem, Ulam      77
Theorem, Vitali on covers      345
Theorem, Vitali — Lebesgue — Hahn — Saks      274 432
Theorem, Vitali — Scheffe      134
Theorem, Young      134 428
Thielman H.      414
Thomson B.S.      210 404 413 421 436 438
Tikhomirov V.M.      420
Titchmarsh E.C.      308 394 401 411 430 431
Tkadlec J.      244 404
Tolstoff (Tolstov. Tolstow) G.P.      159 388 402 407 414 437
Tonelli L.      185 409 423 429
Tonelli theorem      185
Topology of setwise convergence      291
Topology, $\sigma (E, F)$      281
Topology, density      398
Topology, generated by duality      281
Topology, weak      281
Topology, weak*      283
TopsoeF.      421 438
Toralballa L.V.      414
Torchinsky A.      414 436
Tornier E.      411
Tort rat A.      414
Total variation      220
Total variation of a measure      176
Touzillier L.      414
Townsend E.J.      411
Trace of a $\sigma$-algebra      8
Transform, Fourier      197
Transform, Fourier, inverse      200
Transform, Laplace      237
Transform, Radon      227
Transhnite      63
Tricomi F.G.      414
Tumakov I.M.      416 417 423
Two-valued measurable cardinal      79
Tzafriri L.      433
Uhl J.J.      423
Uhrin B.      431
Ulam S.      77 419 422 430
Ulam theorem      77
Ulyanov P.L.      85 413 415
Unbounded measure      24
Uniform, absolute continuity of integrals      267
Uniform, convexity of $L^p$      284
Uniform, countable additivity      274
Uniform, integrability      267 285
Uniform, integrability, criterion      272
Uniformly convex space      284
Uniformly integrable set      267
Unit of algebra.      4
Upper bound of partially ordered set      277
Ursell H.D.      435
Us G.F.      413
V(f, [a, t])      332
Vaisala J      382
Vajda I.      154
Vakhania N.N.      169
Valadier M.      299
Vallee Poussin Ch.J. de la      see “la Vallee Poussin Ch.J. de”
Value, essential      166
van Brunt B.      see “Brunt B. van”
van Dalen D.      see “Dalen D. van”
van der Steen P.      see “Steen P. van der”
van Kampen E.R.      see “Kampen E.R. van”
van Os C.H.      see “Os C.H. van”
van Rooij A.CM.      see “Rooij A.C.M. van”
Van Vleck E.B.      425
Variation of a function      332
Variation of a measure      176
Variation of a set. function      220
Vath M.      414
Vector sum of sets      40
Veress P.      321 426
Verley J.-L.      414
Version of a function      110
Vestrup E.M.      103 229 414
Vinti C.      414
Viola T.      414
Visintin A.      299
Vitali G.      v 31 134 149 268 274 345 409 411 414 417 419 426 428 432 433 436 437
Vitali — Lebesgue — Hahn — Saks theorem      274 432
Vitali — Scheffe theorem      134
Vitali, example      31
Vitali, system      397
Vitushkin A.G.      437
Vladimirov D.A.      421
Vo-Khac Kh.      414
Vogel W.      414
Volcic A.      414
Volterra V.      416 425
Volume of the ball      239
Volume, mixed      226
Vol’berg A.L.      375
von Neumann J.      see “Neumann J. von”
vraisup      140
Vulikh B.Z.      104 414
Vvbornv R.      437
V_a^b(f)$      332
Wagon S.      81 82
Wagschal C.      414 415
Walter W.      414
Wang Z.Y.      423
Warmiith W.      413
Warmuth E.      413
Wazewski T.      418
Weak, compactness      285
Weak, compactness in $L^1$      285
Weak, compactness in $L^p$      282
Weak, convergence      281
Weak, convergence in $L^p$      282
Weak, topology      281
weakly convergent sequence      281
Weber H.      61
Weber K.      413 422
Weber M.      435
Weierstrass K.      260 416
Weighted inequality      374
Weil A.      viii
Weir A.J.      414
Weiss G.      238 320 430 431 435
Weiss N.A.      414 415
Well-ordered set      62
Wesler O.      91
Weyl H.      426
Wheeden R.L.      414
Whitney decomposition      82
Whitney H.      82 373
Widom H.      414
Wiener N.      409 417 419 430
Wierdl M.      435
Wilcox H.J.      414
Williams D.      414
Williamson J.H.      414
Willmott R.C.      430
Wintner A.      430
Wise G.L.      81 228 395 414
Wolff J.      419
Wolff T.      66
Wu J.-M.      376
Ye D.      382
Yeh J.      414
Yosida K.      431
Young G.C.      370 409 417
Young inequality      205
Young theorem      134 428
Young W.H.      v 93 134 205 316 409 417 418 421 423 425 428 432 434 436
Younovitch B.      438
Zaanen A.C.      310 312 320 414 438
Zabreiko P.P.      157 434
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте