Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.1
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.1
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Singular measure 178
Singularity of measures 178
Sinitsyn I.N. 414
Sion M. 414 423 430
Skorohod (Skorokhod) A.V. viii 413
Slutsky E. 171 426
Smiley M.F. 422
Smirnov V.I. 412 426 435
Smital J. 403
Smith H.J.S. 419
Smith H.L. 435
Smulian V.L. 282 434
Sobolev derivative 377
Sobolev inequality 377 378
Sobolev S.L. 325 376
Sobolev space 377
Sobolev V.I. 414
Sodnomov B.S. 87
Sohrab H.H. 414
Solovay R. 80
Soucek J. 379
Souslin M. vii. viii 35 417 420
Souslin operation 36
Souslin scheme 36
Souslin scheme, monotone 36
Souslin scheme, regular 36
Souslin set 39 420
Space of measures 273
Space, 373
Space, 306
Space, Banach 249
Space, Banach, reflexive 281
Space, dual 256 262 281 283 311 313
Space, Euclidean 254
Space, Hilbert 255
Space, Lorentz 320
Space, measurable 4
Space, metric, complete 249
Space, metric, separable 252
Space, normed 249
Space, normed, complete 249
Space, normed, uniformly convex 284
Space, Orlicz 320
Space, probability 10
Space, Sobolev 377
Spiegel M.R. 414
Sprecher D.A. 414
Srinivasan T.P. 94 414 419 420
Staircase of Cantor 193
Stampacchia G. 160
Standard Gaussian measure 198
Steen P. van der 414
Stein E.M. 65 238 320 353 367 374 375 379 386 398 414 430 431 436
Steiner J. 212
Steiner’s symmetrization 212
Steinhaus H. 85 100 102 264 430 431
Stepanoff W. 438
Stieltjes 33 152
Stieltjes T.J. 33 152 416 425
Stolz O. 417
Stone M.H. viii 411 423
Stromberg K. 81 325 402 414 435
Stroock D.W. 414
Structure 277
Structure, -complete 277
Structure, complete 277
Stute W. 413
Subadditivity 9
Subadditivity, countable 11
Sublinear function 67
Submeasure 75
Submeasure, Maharam 75
Submodular set function 75
Subramanian B. 310
Sucheston L. 435 438
Sudakov V.N. 318 434
Suetin P.K. 261
Sullivan D. 422
Sullivan J.A. 413
Sum Fejer 261
Sun Y. 237
Supermodular set function 75
Supremum 277
Surface measure 383
Surface measure on the sphere 238
Svetic R.E. 422
Swanson L.G. 91
Swartz Ch.W. 319 353 413 414 437
Symmetrization of Steiner 212
Sz.-Nagy B. 163 412 414
Szpilrajn E. 80 420
Szymanski W. 416
Table of sets 36
TagamLickii Ya.A. 321
Tagged interval 353
Tagged partition 354
Tagged partition, free 351
Talagrand M. 75 235
Tarski A. 81 422
Taylor A.E. 414 416 432
Taylor J.C. 414
Taylor S.J. 243 414
Teicher H. 413
Telvakovski T S.A. 415
Temple G. 414
Ter Horst H.J. 428
Theodorescu R. 431
Theorem, Baire 166
Theorem, Baire, category 89
Theorem, Banach — Alaoglu 283
Theorem, Banach — Steinhaus 264
Theorem, Banach — Tarski 81
Theorem, Beppo — Levi monotone convergence 130
Theorem, Besicovitch 361
Theorem, Bochner 220
Theorem, Carleson 260
Theorem, covering 361
Theorem, Denjoy — Young — Saks 370
Theorem, Dieudonne viii
Theorem, differentiation 351
Theorem, Eberlein — Smulian 282
Theorem, Egoroff 110 426
Theorem, Fatou 131
Theorem, Fichtenholz viii 271 433
Theorem, Fubini 183 185 209 336 409 429
Theorem, Gaposhkin 289 434
Theorem, Grothendieck viii
Theorem, Hahn — Banach 67
Theorem, Komlos 290
Theorem, Krein — Milman 282
Theorem, Lebesgue on the Baire classes 149
Theorem, Lebesgue — Vitali 268
Theorem, Lebesgue, dominated convergence 130
Theorem, Lusin 115 426
Theorem, mean value, first 150
Theorem, mean value, second 150
Theorem, Miintz 305
Theorem, monotone class 33
Theorem, monotone class functional 146
Theorem, Nikodym 274
Theorem, Plancherel 237
Theorem, Radon — Nikodym 177 178 180 256 429
Theorem, Riemann — Lebesgue 274
Theorem, Riesz 112 256 262
Theorem, Riesz — Fischer 259
Theorem, Sard 239
Theorem, Scheffe 134 428
Theorem, Sierpiriski 48 421
Theorem, Tonelli 185
Theorem, Ulam 77
Theorem, Vitali on covers 345
Theorem, Vitali — Lebesgue — Hahn — Saks 274 432
Theorem, Vitali — Scheffe 134
Theorem, Young 134 428
Thielman H. 414
Thomson B.S. 210 404 413 421 436 438
Tikhomirov V.M. 420
Titchmarsh E.C. 308 394 401 411 430 431
Tkadlec J. 244 404
Tolstoff (Tolstov. Tolstow) G.P. 159 388 402 407 414 437
Tonelli L. 185 409 423 429
Tonelli theorem 185
Topology of setwise convergence 291
Topology, 281
Topology, density 398
Topology, generated by duality 281
Topology, weak 281
Topology, weak* 283
TopsoeF. 421 438
Toralballa L.V. 414
Torchinsky A. 414 436
Tornier E. 411
Tort rat A. 414
Total variation 220
Total variation of a measure 176
Touzillier L. 414
Townsend E.J. 411
Trace of a -algebra 8
Transform, Fourier 197
Transform, Fourier, inverse 200
Transform, Laplace 237
Transform, Radon 227
Transhnite 63
Tricomi F.G. 414
Tumakov I.M. 416 417 423
Two-valued measurable cardinal 79
Tzafriri L. 433
Uhl J.J. 423
Uhrin B. 431
Ulam S. 77 419 422 430
Ulam theorem 77
Ulyanov P.L. 85 413 415
Unbounded measure 24
Uniform, absolute continuity of integrals 267
Uniform, convexity of 284
Uniform, countable additivity 274
Uniform, integrability 267 285
Uniform, integrability, criterion 272
Uniformly convex space 284
Uniformly integrable set 267
Unit of algebra. 4
Upper bound of partially ordered set 277
Ursell H.D. 435
Us G.F. 413
V(f, [a, t]) 332
Vaisala J 382
Vajda I. 154
Vakhania N.N. 169
Valadier M. 299
Vallee Poussin Ch.J. de la see “la Vallee Poussin Ch.J. de”
Value, essential 166
van Brunt B. see “Brunt B. van”
van Dalen D. see “Dalen D. van”
van der Steen P. see “Steen P. van der”
van Kampen E.R. see “Kampen E.R. van”
van Os C.H. see “Os C.H. van”
van Rooij A.CM. see “Rooij A.C.M. van”
Van Vleck E.B. 425
Variation of a function 332
Variation of a measure 176
Variation of a set. function 220
Vath M. 414
Vector sum of sets 40
Veress P. 321 426
Verley J.-L. 414
Version of a function 110
Vestrup E.M. 103 229 414
Vinti C. 414
Viola T. 414
Visintin A. 299
Vitali G. v 31 134 149 268 274 345 409 411 414 417 419 426 428 432 433 436 437
Vitali — Lebesgue — Hahn — Saks theorem 274 432
Vitali — Scheffe theorem 134
Vitali, example 31
Vitali, system 397
Vitushkin A.G. 437
Vladimirov D.A. 421
Vo-Khac Kh. 414
Vogel W. 414
Volcic A. 414
Volterra V. 416 425
Volume of the ball 239
Volume, mixed 226
Vol’berg A.L. 375
von Neumann J. see “Neumann J. von”
vraisup 140
Vulikh B.Z. 104 414
Vvbornv R. 437
V_a^b(f)$ 332
Wagon S. 81 82
Wagschal C. 414 415
Walter W. 414
Wang Z.Y. 423
Warmiith W. 413
Warmuth E. 413
Wazewski T. 418
Weak, compactness 285
Weak, compactness in 285
Weak, compactness in 282
Weak, convergence 281
Weak, convergence in 282
Weak, topology 281
weakly convergent sequence 281
Weber H. 61
Weber K. 413 422
Weber M. 435
Weierstrass K. 260 416
Weighted inequality 374
Weil A. viii
Weir A.J. 414
Weiss G. 238 320 430 431 435
Weiss N.A. 414 415
Well-ordered set 62
Wesler O. 91
Weyl H. 426
Wheeden R.L. 414
Whitney decomposition 82
Whitney H. 82 373
Widom H. 414
Wiener N. 409 417 419 430
Wierdl M. 435
Wilcox H.J. 414
Williams D. 414
Williamson J.H. 414
Willmott R.C. 430
Wintner A. 430
Wise G.L. 81 228 395 414
Wolff J. 419
Wolff T. 66
Wu J.-M. 376
Ye D. 382
Yeh J. 414
Yosida K. 431
Young G.C. 370 409 417
Young inequality 205
Young theorem 134 428
Young W.H. v 93 134 205 316 409 417 418 421 423 425 428 432 434 436
Younovitch B. 438
Zaanen A.C. 310 312 320 414 438
Zabreiko P.P. 157 434
Реклама