Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.1
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.1
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Nonmeasurable linear function 262
Nonmeasurable norm 249
Nonmeasurable set 31
Normed space 249
Normed space, uniformly convex 284
Nowak M.T. 415
Number, ordinal 63
Ochan Yu.S. 415 437
Oden J.T. 414
Okikiolu G.O. 414 430 436
OlevskiT A.M. 261
Olmsted J.M.H. 414
Open set 2
Operation, set-theoretic 1
Operation, Souslin. 36
Ordered set 62
Ordinal 63
Ordinal, number 63
Orlicz space 320
Orlicz W. 307 320
Ort ho normal basis 258
Os C.H. van 411
Oscillation bounded mean 373
Osserman R. 379
Outer measure 16 41
Outer measure, Caratheodory 41
Outer measure, continuity from below 23
Outer measure, regular 44
Oxtoby J.C. 81 93 235 414
Pages G. 413
Paley R. 430
Pallara D. 379
Pallu de la Barriere R. 414
Panchapagesan T.V. 414
Panferov V.S. 415
Pannikov B.V. 435
Pap E. 415 423 433
Papageorgiou N.S. 413
Parseval equality 202 259
Parseval M.A. 202 259
Parthasarathy K.R. vi 414
Partially ordered set 62
Partition tagged 354
Pauc Ch.Y. 411 413 438
Paul S. 416
Pdlya G. 243 429
Peano G. 2 31 416 417
Peano — Jordan measure 2 31
Pecaric J.E. 429
Pedersen G.K. 414
Pedrick G. 413
Pelc A. 81
Pelczynski A. 174
Perimeter 378
Perron O. 437
Pesin I.N. 416 417 423 437
Pesin Y.B. 421
Pettis J. 422 434
Petty C.M. 215
Pfanzagl J. 419
Pfeffer W.F. 369 414 437
Phillips E.R. 414 416
Phillips lemma 303
Phillips R.S. 303
Picone M. 414
Pier J.-P. 416 417 423
Pierlo W. 419
Pierpont J. 410
Pilipenko A.Yu. 382
Pinsker M.S. 155
Pinsker — Kullback — Csiszar inequality 155
Pisier G. 431
Pitman J. 435
Pitt. H.R. 414
Plachky D. 414
Plancherel M. 237 430
Plancherel theorem. 237
Plessner A. 411
Podkorytov A.N. 415
Poincare H. 84 378
Poineare, formula 84
Poineare, inequality 378
Point, density 366
Point, Lebesgue 351 366
Polischuk E.M. 416
Pollard D. 414
Polynomials, Chebyshev — Hermite 260
Polynomials, Laguerre 304
Polynomials, Legendre 259
Ponomarev S.P. 382
Poroshkin A.G. 414 420
Portenier C. 415
Positive definite function 198 220
Possel R. de 438
Pothoven K. 414
Poulsen E.T. 246
Pratt J.W. 428
Preiss D. 404 437
Priestley H.A. 414
Probability, measure 10
Probability, space 10
Product of measures 181
Product of measures, infinite 188
Product, -algebra 180
Product, measure 181
Prohorov (Prokhorov, Prochorow) Yu.V. viii 417
Property, (N) 194 388 438
Property, Banach — Saks 285
Property, doubling 375
Ptak P. 244
Ptak V. 90
Pugachev O.V. 102
Pugachev V.S. 414
Pugh C.C. 414
Purely additive set function 219
Rademacher H. 85
Rado T. 102 437
Radon J. v vi viii 178 227 409 417 418 425 429 431 434 437
Radon transform 227
Radon — Nikodym density 178
Radon — Nikodym theorem 177 178 180 256 429
Ramachandran B. 430
Rana I.K. 414
Randolph J.F. 414
Rao B.V. 211 422
Rao K.P.S. Bhaskara 99 422 423
Rao M. Bhaskara. 99 423
Rao MM. 242 312 320 397 414 423
Ray W.O. 414
Real measurable cardinal 79
Real-valued function 9
Rectangle measurable 180
Reflexive Banach space. 281
Regular outer measure 44
Reichelderfer P.V. 102
Reinhold-Larsson K. 435
Reisner S. 246
Renyi A. 104
Reshetnyak Yu.G. 228 379 382
Restriction of a -algebra 56
Restriction of a measure 23 57
Revuz D. 414
Rey Pastor J. 414
RiceN.M. 431
Richard U. 414
Richter H. 414
Ricker W.J. 423
Rickert N.W. 244
Ricsz M. 295 434
Ridder J. 419
Riecan B. 423
Riemann B. v 138 309 416
Riemann integral 138
Riemann integral, improper 138
Riemann — Lebesgue theorem 274
Riesz F. v viii 112 163 256 259 262 386 409 412 417 424 425 426 430 431 434
Riesz theorem 112 256 262
Riesz — Fischer theorem 259
Ring of sets 8
Ring, generated by a semiring 8
Riviere T. 382
Rogers C.A. 90 215 422 430
Rogosinski W.W. 261 414
Rohlin (Rokhlin) V.A. viii 409 417
Romanovski P. 437
Romero J.L. 310
Rooij A.C.M. van 406 414
Rosenblatt J. 422
Rosenthal A. 410 415 418 419 421
Rosenthal H.P. 303
Rosenthal J.S. 414
Rosenthal lemma. 303
Ross K.A. 435
Rotar V.I. 414
Roussas C.G. 414
Rovden H.L. vi 414
Roy K.C. 414
Rubel L.A. 401
Rubio B. 413
Rubio de Francia J.L. 375
Ruch J-J. 435
Ruckle W.H. 414
Rudin W. 138 314 414 435
Rutickit Ja.B. 320 400 435
Ruziewicz S. 390
Ryll-Nardzewski C. 102 421
Saadoune M. 299
Saakyan A.A. 261 306
Sadovnichii V.A. 172 414
Saks S. 274 276 323 332 370 372 392 411 418 432 433 437
Saksman E. 376
Salem R. 142 435
Salinier A. 415
Samuelides M. 414
SansoneG. 411 414 426
Sarason D. 174
Sard A. 239
Sard, inequality 196
Saturated measure 97
Savage L. 7 279
Saxe K. 414
Saxena S.Ch. 414
Schaefer H.H. 281
Schafke P.W. 414
Schauder basis 296
Schauder J.P. 296 437
Schechtman G. 239
Scheffe H. 134 428
Scheffe theorem 134 428
Scheffer C.L. 431
Scheme, Souslin 36
Scheme, Souslin, monotone 36
Scheme, Souslin, regular 36
Schikhof W.H. 406 414
Schilling R. 414
Schlesinger L. 411
Schlumprecht T. 215 239
Schmets J. 413
Schmetterer L. 412
Schmitz N. 414
Schmuckenschlager M. 246
Schneider R. 431
Schonflies A. 410
Schwartz J.T. 240 282 283 321 413 415 421 423 424 434 435
Schwartz L. 376 414
Schwarz G. 141 428
Second mean value theorem 150
Section of a set 183
Segal I.E. 312 327 414
Semi-algebra of sets 8
Semi-ring of sets 8
Semiadditivity. 9
Seminnite measure 97 312
Seminorm 249
Semmes S. 437
Separable measure 54 91 306
Separable metric space 252
Sequence, convergent in 128
Sequence, convergent in measure 111
Sequence, convergent in the mean 128
Sequence, fundamental in 116 128
Sequence, fundamental in measure 111
Sequence, fundamental in the mean 116 128
Sequence, weakly convergent 281
Serov V.S. 415
Set function, additive 302
Set function, countably additive 9
Set function, countably-subadditive 11
Set function, monotone 17 41 70 71 75
Set function, subadditive 9
Set of full measure 110
Set, -analytic 36
Set, -Souslin 36
Set, -measurable 17 21
Set, analytic 36
Set, Bernstein 63
Set, Besicovitch 66
Set, Borel 6
Set, bounded perimeter 378
Set, Caccioppolli 378
Set, Cantor 30
Set, closed 2
Set, cylindrical 188
Set, Erdos 422
Set, Lebesgue 352
Set, Lebesgue measurable 3 17
Set, locally measurable 97
Set, measurable 21
Set, measurable, Caratheodory 41
Set, measurable, Jordan 2
Set, measurable, Lebesgue 3 17
Set, measurable, with respect to 17
Set, Nikodym 67
Set, nonmeasurable 31
Set, open 2
Set, ordered 62
Set, partially ordered 62 277
Set, Sierpiriski 91
Set, Souslin 36 39 420
Set, well-ordered 62
Set-theoretic, operation 1
Set-theoretic, problem 77
Sets, metrically separated 104
Severini C. 426
Shabunin M.I. 415
Shah S.M. 414
Shakarchi R. 414
Sheftel Z.G. 413
Shilov G.E. 397 414 437 438
Shiryaev A.N. vi 414
Sierphiski W. 48 78 82 91 232 395 409 417 419 422 428
Sierpinski set 91
Sierpinski theorem 48 421
Signed measure 175
Sikorski R. 414 421
Simon L. 437
Simonelli I. 103
Simonnet M. 414
Simonovits M. 173
Simple function 106
Реклама