Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.1
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.1
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
1
1
183
373 374
252
178
205
208
178
139
6
$H(\mu,\nu) 300
216
215
300
118
105
139
281
120 139
120 139
139 250
139
139 250
250
312
36
379
377
379
277
277
176
176
200
-ring of sets 8
11
197
120
116 120
116 120
14 21 24 25
89
89
35
1
143
53
180
180
17
6
6
143
8 56
-analytic set 36
-Souslin set 36
139
108 139 277
118 139
139
139
139
250
26
273
41
16
-a.e. 110
-almost everywhere 110
-measurab1e function 108
-measurab1e set 17 21
-measurability 17
207
190
178
, 176
176
57
180 181
180
23 57
23 57
178
178
63
63
63
-additive class 33
-additive measure 10
-additivity 10
-algebra 4
-algebra, Borel 6
-algebra, complete with respect to 22
-algebra, countably generated 91
-algebra, generated by functions 143
-algebra, generated by sets 4
-complete structure 277
-hnite measure 24 125
-ring of sets 8
theorem 239
281
4 143
43
70
197
277
140
140
250
176
176
A + B 40
A + h 27
A-operation 36 420
a.e. 110
Aaplim 369
Absolute continuity of Lebesgue integral 124
Absolute continuity of measures 178
Absolute continuity, uniform of integrals 267
Absolutely continuous function 337
Absolutely continuous measure 178
Abstract inner measure 70
AC[a, b] 337
Adams M. 413
Adams R.A. 379
Additive extension of a measure 81
Additive set function 9 218 302
Additivity, countable 9
Additivity, finite 9 303
Airault H. 414
Akcoglu M. 435
Akhiezer (Achieser) N.I. 247 261 305
Akilov G.P. 413
Alaoglu L. 283
Alekhno E.A. 157 434
Aleksandrova D.E. 382
Aleksjuk V.N. 293 423 433
Alexander R. 66
Alexandroff (Aleksandrov) A.D. vii viii 237 409 417 422 429 431
Alexandroff P.S. 411 420 437
Algebra of functions 147
Algebra of sets 3
Algebra, Boolean metric 53
Algebra, generated by sets 4
Aliprantis Ch.D. 413 415
Almost everywhere 110
Almost uniform convergence 111
Almost weak convergence in L 280
Alt H.W. 413
Amarm H. 413
Ambrosia L. 379
Amerio L. 414
Analytic set 36
Anderson inequality 225
Anderson T.W. 225
Anger B. 413 415
Ansel J.-P. 415
Antosik P. 319
Approximate continuity 369
Approximate derivative 373
Approximate differentiability 373
Approximate limit 360
Approximating class 13 14 15
Areshkin (Areskin) G.Ya. 293 321 322 418 433
Arias de Revna J. 260
Arino O. 415
Arnaudies J.-M. 413
Arora S. 414
Artemiadis N.K. 413
Ascherl A. 59
Ash R.B. 413
Asplund E. 413
atom 55
Atomic measure 55
Atomless measure 55
Aurnann G. 411 413
Axiom, determinacy 80
Axiom, Martin 78
B(X, A) 291
Bahvalov A.N. 415
Baire R. 88 148 166 409
Baire, category theorem 80
Baire, class 148
Baire, theorem 166
Ball J.M. 316
Banach H. 61 67 81 170 171 249 264 283 388 392 406 409 417 419 422 424 430 433 438
Banach Saks property 285
Banach space 240
Banach space, reflexive 281
Banach — Alaoglu theorem 283
Banach — Steinhaus theorem 264
Banach — Tarski theorem 81
Barra .l.-R. 412 434
Barra G. de 413
Bartle R.G. 413 437
Bary N.K. 85 261 392 407
Basis, Hamel 65 86
Basis, orthonormal 258
Basis, Schauder 296
Bass J. 413
Basu A.K. 413
Bauer H. v 309 413
Beals R. 414
Bear H.S. 413
Behrends E. 413
Belkner H. 413
Bellach J. 413
Bellow A. 435
Benedetto J.J. 160 413 415 436
Benoist J. 415
Beppo Levi Theorem 130
Berberian S.K. 413
Berezansky Yu.M. 413
Bergh J. 435
Bernstein F. 63
Bernstein set 63
Bertin E.M.J. 431
Besicovitch A.S. 65 314 361 421 435 436
Besicovitch, ample 66
Besicovitch, set 66
Besicovitch, theorem 361
Besov O.V. 379
Bessel inequality 259
Bessel W. 259
Bichteler K. 413 423
Bienayme J. 428
Bierlein D. 59 421
Billingsley P. 413
Bingham N.H. 412 416
Birkhoff G. 421
Birkhoff G.D. viii
Bishop E. 423
Bliss G.A. 410
Blumberg H. 421
Bobkov S.G. 431
Bobynin M.N. 324
Boccara N. 413
Bochner S. 220 430
Bochner theorem 220
Bogachev V.I. 198 382 408 411 420 431
Bogoliouboff (Bogolubov, Bogoljubov) N.N. viii
Bogoljubov (Bogolubov) A.N. 416
Boman J. 228
Boolean algebra metric 53
Borel -algebra 6
Borel E. v vii 6 90 106 409 410 416 417 427 430
Borel function 106
Borel mapping 106 145
Borel measure 10
Borel set 6
Borel — Cantelli lemma 90
Borell C. 226 431
Borovkov A.A. 413
Botts T.A. 414
Bouaiad A. 413
Bounded mean oscillation 373
Bourbaki N. 412
Bourgain J. 316
Bouyssel M. 415
Brascamp H. 431
Brehmer S. 413
Brenier Y. 382
Brezis H. 248 298
Briane M. 413
Bridges D.S. 414
Brodskii M.L. 235 408
Brooks J.K. 434
Broughton A. 84
Browder A. 414
Brown A.B. 84
Bruckner A.M. 210 332 395 401 402 413 421 436 438
Bruckner J. B. 210 413 421 436 438
Brudno A.L. 414
Brunn H. 225
Brunn — Minkowski inequality 225
Brunt B. van 425
Brzuchowski J. 421
Buchwalter H. 413
Buczolich Z. 172
Buistin C. 400
Bukovsky L. 421
Buldygin V.V. 80 431
Bungart L. 413
Bunyakowsky (Bunyakovskii, Bounjakowskv) V.Ja. 141 428
Burago D.M. 227 379 431
Burenkov V.I. 391
Burk F. 413
Burkill J.C. 410 413 423 437
Burkinshaw O. 413 415
Burrill C.W. 413
Buseman H. 215 437
BV( ) 378
BV[a, b] 333
Caccioppoli R. 378 433
Caccioppolli set 378
Caffarelli L. 382
Cafiero F. 413 415 433
Calbrix J. 413
Calderon A.P. 385 436
Реклама