Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.1
Bogachev V.I. — Measure Theory Vol.1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.1

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Kolzow D.      438
Komlos J.      290
Komlos theorem      290
Konig H.      422
Konigsberger K.      414
Konyagin S.V.      172 375
Kopp E.      413
Korevaar J.      414
Korner T.W.      66
Kostelyanec P.O.      228
Kovan’ko A.S.      414 423
Kowalsky H.-J.      414
Krasnosel’skii M.A.      320 400 435
Kree P.      414
Krein M.G.      247 282
Krein — Milman theorem      282
Krieger H.A.      414
Kripke B.      414
Krueger O.K.      399 404 406 408 436
Krugova E.P.      378
Kryloff (Krylov) N.M.      viii
Kudryavtsev (Kudryavcev) L.D.      381 415 435 437
Kullback S.      155
Kuller R.G.      414
Kunze R.A      414
Kuratowski K.      61 78 79
Kurtz D.S.      437
Kurzweil J.      vii 353 436
Kusraev A.G.      423
Kutasov A.D.      415
Kuttler K      414
Kv Fan      426
Kvaratskhelia V.V.      169
Ky Fan metric      426
la Vallee Poussin Ch.I. de      272 409 410 417 421 428 432
la Vallee Poussin criterion      272
Laamri I.H.      415
Lacey H.E      121
Lacey M.T.      260
Lagguere E.D      304
Laguerre polynomials      304
Lahiri B.K.      414
Lamperti J.W.      vii
Landis KM.      401
Lang S.      414
Laplace P.      237
Laplace transform      237
Larman D.G.      91 215 422
Lattice      277
Lattice of sets      75
Lax P.      414
Leader S.      437
Leant’eva T.A.      415
Lebesgue H.      v 2 14 28 33 118 130 149 152 268 274 344 351 391 409 410 416 418 420 422 423 425 426 427 428 429 432 433 434 435 436 437
Lebesgue Vitali theorem      268
Lebesgue — Stieltjes integral      152
Lebesgue — Stieltjes measure      33
Lebesgue, completion of a measure      22
Lebesgue, decomposition      180
Lebesgue, dominated convergence theorem      130
Lebesgue, extension of a measure      22
Lebesgue, integral      116 118
Lebesgue, integral with respect to an infinite measure      125
Lebesgue, integral, absolute continuity      124
Lebesgue, measurability      3
Lebesgue, measurable set      17
Lebesgue, measure      14 21 24 25 26
Lebesgue, measure, extension      81
Lebesgue, point      351 366
Lebesgue, set      352
Lebesgue, theorem on the Baixe classes      149
Ledoux M.      431
Lee J.R.      414
Lee P.Y.      437
Legendre A.-M.      259
Legendre polynomials      259
Lehmarm E.L.      412 434
Lehn      7 59
Leichtweiss K      431
Leinert M.      414
Lembcke J.      421
Lemma, Borel — Cantelli      90
Lemma, Fatou      131
Lemma, Phillips      303
Lemma, Rosenthal      303
Letac G.      414 415
Letta G.      414
Levi B      130 428 436 438
Levshin B.V.      416
Levy P. ix      419
Lichtenstein L.      234
Lieb E.H.      214 298 325 413 431
Liese F.      154
Limit, approximate      369
Limit, under the integral sign      130
Lindenstrauss J.      433
Lipecki Z.      61 422
Littlewood J.E.      243 429
Lmikkainen J.      376
Localizable measure      97 312
Locally determined measure      98
Locally measurable set      97
Lodkin A.A.      415
Loeve M.      vi 412
Lofstrom J.      435
Logarithmically concave, measure      220
Lojasiewicz S.      414
Lomnicki Z.      419 430
Looman H      437
Lorentz class      320
Lorentz G-G.      420
Los J.      421
Losch F.      414
Losert V.      435
Loss M      214 325 431
Lovasz L.      173
Lower bound of a partially ordered set      277
Lozinskii S.M.      406
Lubotzky A      82
Lucia P. de      423 433
Lukacs E.      241 430
Lukes      1 414
Lusin N.      v viii 115 194 332 400 402 409 410 414 417 420 426 437 438
Lusin, property (N)      194 388 438
Lusin, theorem      115 426
Luther N.Y.      99 236
Lyapunov A.M.      154
MacNeille H.M.      162 424
Magyar Z.      414
Maharam D      75 97
Maharam, measure      97 312
Maharam, submeasure      75
Makarov B.M.      413 415
Malik S.C.      414
Malliavin P.      414
Mallory D.      52
Maly J.      414
Malyugin S.A.      423
Mapping, Borel      106 145
Mapping, measurable      106
Marcinkiewicz J.      435 437
Marczewski E.      100 102 165 409 419 421
Margulis G.A.      81 422
Marie C.-M.      414
Martin D.A.      78 80
Martin’s axiom      78
Mattila P.      436 437
Mauldin R.D.      61 172 210 211
Maurin K.      414
Mawhin J.      414 437
Maximal function      349
Mayrhofer K      414
Mazurkiewicz S.      391
Maz’ja V.G.      379
McCann R.J.      382
McDonald J.N.      414 415
McLeod R.M.      437
McShane E.L      353 411 414 437
McShane, integrability      354
McShane, integral      354
Measurability with respect to a measure      108
Measurability, Borel      106
Measurability, Caratheodory      41
Measurability, criterion      22
Measurability, Jordan      2
Measurability, Lebesgue      3
Measurability, with respect to a $\sigma$-algebra      106
Measurable cardinal      79
Measurable envelope      44 56
Measurable function      105
Measurable function with respect to $\sigma$-algebra      105
Measurable kernel      57
Measurable mapping      106
Measurable rectangle      180
Measurable set      21 41
Measurable space      4
Measure      9
Measure space      10
Measure with the doubling property      375
Measure with values in $[0, +\infty]$      24 129
Measure, $\sigma$-additive      10
Measure, $\sigma$-finite      24 125
Measure, absolutely continuous      178
Measure, abstract inner      70
Measure, additive extension      81
Measure, atomic      55
Measure, atomless      55
Measure, Borel      10
Measure, complete      22
Measure, convex      226 378
Measure, countably additive      9
Measure, countably additive, infinite      24
Measure, decomposable      96 235 313
Measure, Dirac      11
Measure, Gaussian      198
Measure, Hausdorff      216
Measure, infinite      24 97 129 235
Measure, infinite, countably additive      24
Measure, inner      57 70
Measure, inner, abstract      70
Measure, Jordan      2 31
Measure, Lebesgue      14 21 24 25 26
Measure, Lebesgue — Stieltjes      33
Measure, locally determined      98
Measure, logarithmically concave      226
Measure, Maharam      97 312
Measure, outer      16 41
Measure, outer, Caratheodory      41
Measure, outer, regular      44
Measure, Peano — Jordan      2 31
Measure, probability      10
Measure, Realizable      97 312
Measure, restriction      23
Measure, saturated      97
Measure, semifinite      97 312
Measure, separable      53 91 306
Measure, signed      175
Measure, singular      178
Measure, standard Gaussian      198
Measure, surface      383
Measure, surface, standard on the sphere      238
Measure, unbounded      24 129
Measures, equivalent      178
Measures, mutually singular      178
Medeiros L.A.      414
Medvedev F.A      416 417 419 423 425 427 437
Mejlbro L      260 438
Mello E.A. de      414
Melnikov M.S.      214
Menchoff D.      390 392 401 416
Mergelyan S.N.      91
Merli L.      414
Method of construction of measures      43
Metivier M.      414
Metric Boolean algebra      53
Metric, convergence in measure      306
Metric, Frechet — Nikodym      53 418
Metric, Hellinger      301
Metric, Ky Fan      426
Metrically separated sets      101
Meyer M.      246
Meyer P.-A.      415
Miamee A.G.      310
Michel A.      416 417 423
Michel H.      414
Migorski S.      413
Miintz Ch.H.      305
Mikusinski J.      162 319 414 424
Miller H.I.      403
Milman DP.      282
Minkowski G.      142 225
Minkowski inequality      142 225 231
Misiewicz J.K.      431
Mitrinovic D.S.      429
Mixed volume      226
Miyara M.      308
Modica G.      379
Modification of a function      110
Modular set function      75
Monfort A.      414
Monna A.F.      417 423
Monocompact class      52
Monotone class      33 48
Monotone convergence      130
Monotone function, differentiability      336
Monotone function, Lebesgue decomposition      344
Monotone set function      17 41 70 71 75
Montel P.      410
Moore E, H.      435
Morgan F.      437
Morse A.P.      344 436 438
Moser J.      382
Mostowski A.      78 79
Mozzochi C.J.      260 435
Mukherjea A.      414
Muldowney P.      437
Munroe M.E.      412 421
Muntz theorem      305
Murat F.      316
Mutually singular measures      178
Mycielski J.      240
Myers D.L.      414
Natanson I.P.      vi 62 149 400 406 411 412 437
Natterer F.      227
Nekrasov V.L.      410
Nemytskii V.V.      437
Neubrunn T.      423
Neumann J. von      vii viii ix 82 409 411 417 429
Neveu J.      vi 414
Newton Leibniz formula      342
Nielsen O.A.      320 414
Nikliborc L.      319
Nikodym O. (Nikodym O.M.)      v vi 53 67 89 178 229 274 306 417 419 421 429 431 432 433
Nikodym, example      210
Nikodym, set      67
Nikodym, theorem      274
NikolskiT S.M.      379
Nirenberg L.      373
Nonincreasing rearrangement      242
Nonmeasurable cardinal      79
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте