Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.1
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.1
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Kolzow D. 438
Komlos J. 290
Komlos theorem 290
Konig H. 422
Konigsberger K. 414
Konyagin S.V. 172 375
Kopp E. 413
Korevaar J. 414
Korner T.W. 66
Kostelyanec P.O. 228
Kovan’ko A.S. 414 423
Kowalsky H.-J. 414
Krasnosel’skii M.A. 320 400 435
Kree P. 414
Krein M.G. 247 282
Krein — Milman theorem 282
Krieger H.A. 414
Kripke B. 414
Krueger O.K. 399 404 406 408 436
Krugova E.P. 378
Kryloff (Krylov) N.M. viii
Kudryavtsev (Kudryavcev) L.D. 381 415 435 437
Kullback S. 155
Kuller R.G. 414
Kunze R.A 414
Kuratowski K. 61 78 79
Kurtz D.S. 437
Kurzweil J. vii 353 436
Kusraev A.G. 423
Kutasov A.D. 415
Kuttler K 414
Kv Fan 426
Kvaratskhelia V.V. 169
Ky Fan metric 426
la Vallee Poussin Ch.I. de 272 409 410 417 421 428 432
la Vallee Poussin criterion 272
Laamri I.H. 415
Lacey H.E 121
Lacey M.T. 260
Lagguere E.D 304
Laguerre polynomials 304
Lahiri B.K. 414
Lamperti J.W. vii
Landis KM. 401
Lang S. 414
Laplace P. 237
Laplace transform 237
Larman D.G. 91 215 422
Lattice 277
Lattice of sets 75
Lax P. 414
Leader S. 437
Leant’eva T.A. 415
Lebesgue H. v 2 14 28 33 118 130 149 152 268 274 344 351 391 409 410 416 418 420 422 423 425 426 427 428 429 432 433 434 435 436 437
Lebesgue Vitali theorem 268
Lebesgue — Stieltjes integral 152
Lebesgue — Stieltjes measure 33
Lebesgue, completion of a measure 22
Lebesgue, decomposition 180
Lebesgue, dominated convergence theorem 130
Lebesgue, extension of a measure 22
Lebesgue, integral 116 118
Lebesgue, integral with respect to an infinite measure 125
Lebesgue, integral, absolute continuity 124
Lebesgue, measurability 3
Lebesgue, measurable set 17
Lebesgue, measure 14 21 24 25 26
Lebesgue, measure, extension 81
Lebesgue, point 351 366
Lebesgue, set 352
Lebesgue, theorem on the Baixe classes 149
Ledoux M. 431
Lee J.R. 414
Lee P.Y. 437
Legendre A.-M. 259
Legendre polynomials 259
Lehmarm E.L. 412 434
Lehn 7 59
Leichtweiss K 431
Leinert M. 414
Lembcke J. 421
Lemma, Borel — Cantelli 90
Lemma, Fatou 131
Lemma, Phillips 303
Lemma, Rosenthal 303
Letac G. 414 415
Letta G. 414
Levi B 130 428 436 438
Levshin B.V. 416
Levy P. ix 419
Lichtenstein L. 234
Lieb E.H. 214 298 325 413 431
Liese F. 154
Limit, approximate 369
Limit, under the integral sign 130
Lindenstrauss J. 433
Lipecki Z. 61 422
Littlewood J.E. 243 429
Lmikkainen J. 376
Localizable measure 97 312
Locally determined measure 98
Locally measurable set 97
Lodkin A.A. 415
Loeve M. vi 412
Lofstrom J. 435
Logarithmically concave, measure 220
Lojasiewicz S. 414
Lomnicki Z. 419 430
Looman H 437
Lorentz class 320
Lorentz G-G. 420
Los J. 421
Losch F. 414
Losert V. 435
Loss M 214 325 431
Lovasz L. 173
Lower bound of a partially ordered set 277
Lozinskii S.M. 406
Lubotzky A 82
Lucia P. de 423 433
Lukacs E. 241 430
Lukes 1 414
Lusin N. v viii 115 194 332 400 402 409 410 414 417 420 426 437 438
Lusin, property (N) 194 388 438
Lusin, theorem 115 426
Luther N.Y. 99 236
Lyapunov A.M. 154
MacNeille H.M. 162 424
Magyar Z. 414
Maharam D 75 97
Maharam, measure 97 312
Maharam, submeasure 75
Makarov B.M. 413 415
Malik S.C. 414
Malliavin P. 414
Mallory D. 52
Maly J. 414
Malyugin S.A. 423
Mapping, Borel 106 145
Mapping, measurable 106
Marcinkiewicz J. 435 437
Marczewski E. 100 102 165 409 419 421
Margulis G.A. 81 422
Marie C.-M. 414
Martin D.A. 78 80
Martin’s axiom 78
Mattila P. 436 437
Mauldin R.D. 61 172 210 211
Maurin K. 414
Mawhin J. 414 437
Maximal function 349
Mayrhofer K 414
Mazurkiewicz S. 391
Maz’ja V.G. 379
McCann R.J. 382
McDonald J.N. 414 415
McLeod R.M. 437
McShane E.L 353 411 414 437
McShane, integrability 354
McShane, integral 354
Measurability with respect to a measure 108
Measurability, Borel 106
Measurability, Caratheodory 41
Measurability, criterion 22
Measurability, Jordan 2
Measurability, Lebesgue 3
Measurability, with respect to a -algebra 106
Measurable cardinal 79
Measurable envelope 44 56
Measurable function 105
Measurable function with respect to -algebra 105
Measurable kernel 57
Measurable mapping 106
Measurable rectangle 180
Measurable set 21 41
Measurable space 4
Measure 9
Measure space 10
Measure with the doubling property 375
Measure with values in 24 129
Measure, -additive 10
Measure, -finite 24 125
Measure, absolutely continuous 178
Measure, abstract inner 70
Measure, additive extension 81
Measure, atomic 55
Measure, atomless 55
Measure, Borel 10
Measure, complete 22
Measure, convex 226 378
Measure, countably additive 9
Measure, countably additive, infinite 24
Measure, decomposable 96 235 313
Measure, Dirac 11
Measure, Gaussian 198
Measure, Hausdorff 216
Measure, infinite 24 97 129 235
Measure, infinite, countably additive 24
Measure, inner 57 70
Measure, inner, abstract 70
Measure, Jordan 2 31
Measure, Lebesgue 14 21 24 25 26
Measure, Lebesgue — Stieltjes 33
Measure, locally determined 98
Measure, logarithmically concave 226
Measure, Maharam 97 312
Measure, outer 16 41
Measure, outer, Caratheodory 41
Measure, outer, regular 44
Measure, Peano — Jordan 2 31
Measure, probability 10
Measure, Realizable 97 312
Measure, restriction 23
Measure, saturated 97
Measure, semifinite 97 312
Measure, separable 53 91 306
Measure, signed 175
Measure, singular 178
Measure, standard Gaussian 198
Measure, surface 383
Measure, surface, standard on the sphere 238
Measure, unbounded 24 129
Measures, equivalent 178
Measures, mutually singular 178
Medeiros L.A. 414
Medvedev F.A 416 417 419 423 425 427 437
Mejlbro L 260 438
Mello E.A. de 414
Melnikov M.S. 214
Menchoff D. 390 392 401 416
Mergelyan S.N. 91
Merli L. 414
Method of construction of measures 43
Metivier M. 414
Metric Boolean algebra 53
Metric, convergence in measure 306
Metric, Frechet — Nikodym 53 418
Metric, Hellinger 301
Metric, Ky Fan 426
Metrically separated sets 101
Meyer M. 246
Meyer P.-A. 415
Miamee A.G. 310
Michel A. 416 417 423
Michel H. 414
Migorski S. 413
Miintz Ch.H. 305
Mikusinski J. 162 319 414 424
Miller H.I. 403
Milman DP. 282
Minkowski G. 142 225
Minkowski inequality 142 225 231
Misiewicz J.K. 431
Mitrinovic D.S. 429
Mixed volume 226
Miyara M. 308
Modica G. 379
Modification of a function 110
Modular set function 75
Monfort A. 414
Monna A.F. 417 423
Monocompact class 52
Monotone class 33 48
Monotone convergence 130
Monotone function, differentiability 336
Monotone function, Lebesgue decomposition 344
Monotone set function 17 41 70 71 75
Montel P. 410
Moore E, H. 435
Morgan F. 437
Morse A.P. 344 436 438
Moser J. 382
Mostowski A. 78 79
Mozzochi C.J. 260 435
Mukherjea A. 414
Muldowney P. 437
Munroe M.E. 412 421
Muntz theorem 305
Murat F. 316
Mutually singular measures 178
Mycielski J. 240
Myers D.L. 414
Natanson I.P. vi 62 149 400 406 411 412 437
Natterer F. 227
Nekrasov V.L. 410
Nemytskii V.V. 437
Neubrunn T. 423
Neumann J. von vii viii ix 82 409 411 417 429
Neveu J. vi 414
Newton Leibniz formula 342
Nielsen O.A. 320 414
Nikliborc L. 319
Nikodym O. (Nikodym O.M.) v vi 53 67 89 178 229 274 306 417 419 421 429 431 432 433
Nikodym, example 210
Nikodym, set 67
Nikodym, theorem 274
NikolskiT S.M. 379
Nirenberg L. 373
Nonincreasing rearrangement 242
Nonmeasurable cardinal 79
Реклама