Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.1
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.1
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Function of bounded variation 332 378
Function, -measurable 108
Function, absolutely continuous 337
Function, Borel 106
Function, Cantor 193
Function, characteristic of a measure 197
Function, characteristic of a set 105
Function, complex-valued 127
Function, convex 153
Function, differentiable 329
Function, essentially bounded 140
Function, indicator of a set 105
Function, maximal 349 373
Function, measurable 105
Function, measurable, with respect to 108
Function, measurable, with respect to -algebra 105
Function, positive definite 198 220
Function, real-valued 9
Function, set, additive 9 218
Function, set, finitely additive 9
Function, set, modular 75
Function, set, monotone 75
Function, set, purely additive. 219
Function, set, submodular 7-5
Function, set, supermodular 75
Function, simple 106
Function, sub linear 67
Function, with values in 107
Functional monotone class theorem 146
Functions, equimeasurable 243
Functions, equivalent 120 139
Functions, Haar 296 306
Fundamental in 128
Fundamental in measure 111
Fundamental in the mean. 128
Fundamental sequence in 116
Fundamental sequence in the mean. 116
Fusco N. 379
f|A 1
Galambos J. 103 413
Ganssler P. 413
Gaposhkin theorem 289 434
Gaposhkin V.F 289 317 434
Garcia-Cuerva J. 375
Gardner R.J. 215 226
Gariepy R.F. 379 437
Garnir H.G 413
Garsia A.M. 261
Gaughan E. 413
Gaussian measure 198
Gelbaum B. 415
Generalized derivative 377
Generalized inequality, Holder 141
Generated -algebra 4 143
Generated algebra 4
Genet J. 415
George C. 87 91 173 307 415
Giaquinta M. 379
Giinzler H. 413
Gikhman I.I. 413
Gillis J. 90
Girardi M. 434
Giustu E. 379
Gladvsz S. 102
Glazkov V.N. 95 421
Glazyrina P.Yu. 169
Gleason A.M. 413
Glivenko V.I. 425 437
Gnedenko B.V. 412
Gneiting T. 246
Godement R. 414
Goffman C. 399 413
Goguadze D.F. 435 437
Gohman E.H. 324 425
Goldberg R.R. 413
Goluzina M.G. 415
Gomes R.L. 437
Gordon R.A. 353 357 406 437
Gordshteih V.M. 379
Gotze F. 431
Gouyon R. 413
Gowurin M.K. 160 276 322
Gramain A. 413
Grauert H. 413
Grave D. 436
Gray L. 413
Grigor’yan A.A. 172
Gromov M. 246
Grothendieck A. viii
Grothendieck theorem viii
Gruber P.M. 422
Grzegorek E. 421
Guillemin V. 413
Gunther N.M. 425
Gupta V.P. 414
Gurevich B.L. 397 414 438
Gut A. 413
Guzman M. de 67 346 353 413 436
Gvishiani A.D. 414 415
Haar A. viii 306 417
Haar function 296 306
Haaser N.B. 413
Hacaturov A.A. 228
Hackenbroch W. 413
Hadwiger H. 82 227 246 431
Hahn decomposition. 176
Hahn H. v vi 67 176 274 402 409 411 415 417 418 419 421 423 428 429 432 433 435
Hahn — Banach theorem 67
Hajlasz P. 381
Hake H. 437
Hall E.B. 81 228 395 414
Halmos P. v 180 279 412
Hanisch H. 104
Hankel H. 416
Hanner inequality 325
Hanner O. 325
Hardy and Littlewood inequality 243
Hardy G.H. 243 261 308 429
Hardy inequality 308
Harnack A. 416 417
Harnel basis 65 86
Hartman S. 413
Haupt O. 411 413
Hausdorff F. 81 215 409 410 417 420 422 430
Hausdorff, dimension 216
Hausdorff, measure 216
Havin V.P. 413
Hawkins T. 417 423
Hayes C.A. 438
Heinonen J. 375
Helgason S. 227
Hellinger E. 301 435
Hellinger, integral 300 435
Hellinger, metric 301
Hennequin P.-L. 413
Henstock Kurzweil integrability 354
Henstock Kurzweil integral 354 437
Henstock R. vii 353 414 437
Henze E. 414
Herglotz G. 430
Hermite Ch. 260
Hesse C. 414
Heuser H. 414
Hewitt E. 325 414 431
Hilbert D. 255 431
Hilbert space 255
Hildebrandt T.H. 410 414
Hille E. 414
Hinderer K. 414
Hirsch W.M. 104
Hobson E.W. 410
Hochkirchen T. 417 423
Hodakov V.A. 401
Hoffman K. 414
Hoffmann D. 414
Hoffmann-Jorgensen J. 95 414 421
Holder inequality 140
Holder inequality, generalized 141
Holder O. 140
Holdgriin H.S. 414
Hopf E. viii 419 429
Howard E.J. 369
Hu S. 414
Huff B.W. 84
Hulanicki A. 422
Hull convex 40
Humke P.D. 404
Hunt C.A. 309
Hunt FLA. 260
Il’in V.P. 379
Image of a measure 190
Inaccessible cardinal 79
Indefinite integral 338
Indicator function 105
Indicator of a set 105
Inequality, Anderson 225
Inequality, Bessel 259
Inequality, Brunn — Minkowskij 225
Inequality, Cauchy — Bunyakowsky 141 255
Inequality, Chebyshev 122 405
Inequality, Clarkson 325
Inequality, Hanner 325
Inequality, Hardy 308
Inequality, Hardy and Littlewood 243
Inequality, Holder 140
Inequality, Holder, generalized 141
Inequality, isoperimetric 378
Inequality, Jensen 153
Inequality, Minkowski 142 226 231
Inequality, Pinsker — Kullback — Csiszar 155
Inequality, Poincare 378
Inequality, Sard 196
Inequality, Sobolev 377 378
Inequality, weighted 374
Inequality, Young 205
Infimum 277
Infinite measure 24 97 235
Infinite measure, Lebesgue integral 125
Infinite product of measures 188
Ingleton A.W. 414
Inner measure 57 70
Inner measure, abstract 70
Inner product 254
Integrability, criterion 136
Integrability, Henstock Kurzweil 354
Integrability, McShane 354
Integrability, uniform 285
Integral of a complex-valued function 127
Integral of a mapping in 127
Integral, Hellinger 300 435
Integral, Henstock Kurzweil 354 437
Integral, indefinite 338
Integral, Kolmogorov 435
Integral, Lebesgue 118
Integral, Lebesgue Stieltjes 152
Integral, Lebesgue, of a simple function 116
Integral, McShane 354
Integral, Riemann 138
Integral, Riemann, improper 138
Integration by parts 343
interval 2
Interval, tagged 353
Interval, tagged, free 353
Inverse Fourier transform 200
Isoperimetric inequality 378
Ivanov L.D. 437
Ivanov V.V. 237
Jacobian 194 379
Jacobs K. 414
Jain P.K. 414
James R.C 414
Janesen A.J.E.M. 414
Jayne J. 421
Jean R. 414
Jech Th.J. 62 78 79 80
Jefferies B. 423
Jeffery R. 414
Jensen inequality 153
Jensen J.L.W.V. 153 429
Jessen B. 412 419 429 435 437
Jflrboe O.G. 260
Jimenez Pozo M.A. 414
Joag-Dev K. 431
John F 373
Jones F.B. 86 414 422
Jones R.L. 435
Jordan C. vi 2 31 176 416 417 429 436
Jordan — Hahn decomposition 176
Jordan, decomposition 176 220
Jordan, measure 2 31
Jost J. 414
Kaczmarz S. 319
Kaczor W.J. 415
Kadec M.I. 174
Kahane C.S. 435
Kahane J.-P. 66 103 429
Kakeya problem 66
Kakutani S. 81 173 409 429
Kallenberg O. 414
Kamke E. 411 414 426
Kampen E.R. van 429
Kannan R. 173 399 404 406 408 436
Kanovei V.G. 80
Kantorovitch L.V 435
Kantorovitz S. 414
Kappos D.A. 421
Karr A.F. 414
Kascenko Yu.D. 437
Kashin B.S. 261 306
Katznelson Y. 402
Kaufman R.P. 244 376
Kawata T. 430
Kay L. 414
Kazaryan K.S. 415
Keleti T. 436
Kelley J.L. 94 414
Kenyon H. 438
Kernel measurable 57
Kestelman H. 90 406 411 437
Khakhubia G.P. 425
Kharazishvili A.B. 79 80 81 82 91 211 431 436
Khintchine (Khinchin) A. 437 438
Kindler J. 100 422
Kingman J.F.C. 414
Kirillov A.A. 414 415
Kisyriski J. 422
Klambauer G. 414
Klei H.-A. 308
Klimkin V.M. 293 322 423 433
Klir G.J. 423
Kluvanek I. 423
Kneser M. 246
Knowles G. 423
Knudsen J.R. 413
Kodaira S. 81
Koldobsky (Koldobskii) A.L. 215
Kolesnikov A.V. 408 420
Kolmogoroff (Kolmogorov) A. vi vii ix 62 65 67 192 248 261 409 411 412 417 418 419 424 429 434 435 437
Kolmogorov, example 261
Kolmogorov, integral 435
Реклама