Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.1
Bogachev V.I. — Measure Theory Vol.1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.1

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Cantelli F.P.      90 430
Cantor G.      30 193 416 417
Cantor, function      193
Cantor, set      30
Cantor, staircase      193
Capiriski M.      413 415
Caratheodary, measurability      41
Caratheodary, outer measure      41
Caratheodory C.      v 41 100 409 410 417 418 419 420 421
Cardinal, inaccessible      79
Cardinal, measurable      79
Cardinal, nonmeasurable      79
Cardinal, real measurable      79
Cardinal, two-valued measurable      79
Carleman T.      247
Carlen E.      325
Carleson L.      260
Carleson theorem      260
Carlson T.      61
Carothers N.L.      413 436
Carter M.      425
Cauchy O.      141 428
Cauchy — Bunyakowsky inequality      141 255
Chacon R.V.      434
Chae S.B.      413 415
Chandrasekharan K.      413
Change of variables      194 343
Characteristic function of a measure      197
Characteristic function of a set      105
Characteristic functional      197
Chavel I.      379
Chebyshev inequality      122 405
Chebyshev P.L.      122 260 428 430
Chebyshev — Hermite polynomials      260
Chehlov V.I.      415
CheLidze V.C.      437
Cheney W.      413
Chentsov A.G.      423
Chong K.M.      431
Choquet G.      413 417
Chow Y.S.      413
Cichon J.      421
Ciesielski K.      81 87
Cifuentes P.      415
Cignoli R.      413
Clarkson inequality      325
Clarkson J.A.      325
Class, $\sigma$-additive      33
Class, approximating      13 14
Class, approximating, compact      13 14
Class, Baire      148
Class, compact      13 50 189
Class, Lorentz      320
Class, monocompact      52
Class, monotone      33 48
Closed set      2
Cohn D.L.      413
Coifman R.R.      375
Compact class      13 50 189
Compactness in $L^0(\mu)$      321
Compactness in $L^p$      295 317
Compactness, weak in $L^1$      285
Compactness, weak in $L^p$      282
Complete $\sigma$-algebra      22
Complete measure      22
Complete metric space      249
Complete normed space      249
Complete structure      277
Completion of a $\sigma$-algebra      22
Completion of a measure.      22
Complex-valued function      127
Constantinescu C.      413
Continuity from below of outer measure      23
Continuity of a measure at zero      10
Continuity, approximate      369
Continuum Hypothesis      78
conv A      40
Convergence in $L^1(\mu)$      128
Convergence in $L^p$      298
Convergence in measure      111 306
Convergence in the mean      128
Convergence of measures setwise      274 291
Convergence, almost everywhere      110
Convergence, almost uniform      111
Convergence, almost weak in $L^1$      289
Convergence, weak      281
Convergence, weak in $L^p$      282
Convex, function      153
Convex, hull of a set      40
Convex, measure      226 378
Convolution of a function and a measure      208
Convolution of integrable functions      205
Convolution of measures      207
Cotlar M.      413
Countable additivity      9 24
Countable additivity, uniform      274
Countable subadditivity      11
Countably generated $\sigma$-algcbra      91
Courrege P.      413
Cover      345
Cram MM.      430
Cramer H.      412
Craven B.D.      413
Criterion of compactness in $L^p$      295
Criterion, de la Vallee Poussin      272
Criterion, integrability      136
Criterion, measurability      22
Criterion, uniform integrability      272
Criterion, weak compactness      285
Crittenden R.B.      91
Csiszar I.      155
Csornyei M.      234
Cuculescu I.      431
Cylinder      188
Cylindrical set      188
Dalen D. van      417 423
Dameter of a set      212
Danes S.      431
Daniell P.J.      viii 417 419 423 429
Darboux G.      416
Darji U.B.      103 164
Darst R.B.      243
David G.      437
Davies R.O.      156 234 235 405
de Barm G.      see “Barra G. de”
de Guzman M.      see “Guzman M. de”
de la Vallee Poussin Ch.J.      see “la Vallec Poussin Ch.J. de”
de Mello E.A.      see “Mello E.A. de”
de Possel R.      see “Possel R. de”
De Wilde M.      413
Decomposable measure      96 235 313
Decomposition of set functions      218
Decomposition, Hahn      176
Decomposition, Jordan      176 220
Decomposition, Jordan Hahn      176
Decomposition, Lebesgue      180
Decomposition, Lebesgue, of a monotone function      344
Decomposition, Whitney      82
Degree of a mapping      240
Deheuvels P.      413
Delode C.      415
Demidov S.S.      416
Demkowicz L.F.      414
Denjoy A.      370 404 409 417 437 438
Denjoy — Young — Saks theorem      370
Denkowski Z.      413
Denneberg D.      423
Density of a measure      178
Density of a set      366
Density, point      366
Density, Radon — Nikodym      178
Density, topology      370 398
DePree J.      413 437
Derivate      331
Derivative      329
Derivative of a measure with respect to a measure      367
Derivative, approximate      373
Derivative, generalized      377
Derivative, left      331
Derivative, lower      332
Derivative, right      331
Derivative, Sobolev      377
Derivative, upper      332
Descombes R.      413
Determinacy, axiom      80
Dharmadhikari S.      431
DiBenedetto E.      413
Diestel J.      282 285 319 423 433
Dieudonne J.      viii 413
Dieudonne theorem      viii
Differentiability, approximate      373
Differentiable function      329
Differentiation of measures      367
Dinculeanu N.      423
Dini condition      200
Dini U.      200 416
Dirac measure      11
Dirac P.      11
dist(a, B)      47
Distance to a set      47
Distribution function of a measure      32
Dixmiei J.      413
Dolzenko E.P.      403
Dominated convergence      130
Doob J.L.      ix
Dorogovtsev A.Ya.      413 415
Doubling property      375
Douglas R.G.      325
Drewnowski L.      319 423 433
Drinfeld V.G.      422
Dshalalow J.H.      413
Dual space      256 262 281 283 311 313
Dual to $L^1$      266 313 431
Dual to $L^p$      266 311 431
Dubins L.E.      435
Dubrovskii V.M.      324 433
Ducel Y.      415
Dudley R.M.      62 228 413 415
Dugac P.      416 432
Dunford N.      240 282 283 321 413 415 421 423 424 431 434 435
Durrett R.      413
Dynkin E.B.      420
Dzhvarsheishvili A.G.      437
D’yachenko M.I.      413 415
E*      262 281 283
E**      281
Earner M.      413
Eaton M.L.      431
Eberlein W.F.      282 434
Eberlein — Smulian theorem      282
Edgar G.A.      413 435 437 438
Edwards R.E.      261 423
Eggleston H.G.      235
Egoroff D.-Th.      v 110 417 426 437
Egoroff theorem      110 426
Eisen M.      413
Elstrodt J.      413 415
Ene V.      436
Envelope, closed convex      282
Envelope, measurable      44 56
Equality of Parseval      259
Equimeasurable functions      243
Equivalence of functions      139
Equivalence of measures      178
Equivalent, functions      120 139
Equivalent, measures      178
Erdos P.      90 235 243
Erdos set      422
Escher J.      413
Essential value of a function      166
Essentially bounded function      140
essinf      167
esssup      167 250
Euclidean space      254
Evans C.      379 437
Evans M.J.      103 164
Example, Besicovitch      66
Example, Fichtenholz      233
Example, Kolmogorov      261
Example, Nikodym      210
Example, Vitali      31
Extension of a measure      18 22 58
Extension of a measure, Lebesgue      22
Extension of Lebesgue measure      81
Faber V.      240
Faden A.M.      423
Falconer K.J.      67 210 234 243 421 437
Farrell R.H.      308
Fatou P.      130 131 428
Fatou, lemma      131
Fatou, theorem      131
Federer H.      79 243 312 373 381 413 430 437
FeHermann C.      375
Fejer L.      261
Fejer sum      261
Fejzic H.      87
Feller W.      437
Fernandez P.J.      413
Fichera G.      413
Fichtenholz G.      viii 134 234 276 344 391 392 396 411 428 432 433 435
Fichtenholz, example      233
Fichtenholz, theorem      viii 271 433
Filter W.      413 422
Finitely additive, set function      9 303
Fink A.M.      429
First mean value theorem      150
Fischer E.      259 404 431
Fleming W.      414
Flohr F.      413
Floret K.      413
Folland G.B.      413
Fomin S.V.      vi 62 65 67 412 424
Fominykh M.Yu.      435
Fonda A.      413
For an J.      413
Formula, area      380
Formula, change of variables      343
Formula, coarea      380
Formula, integration by parts      343
Formula, inversion      200
Formula, Newton — Leibniz      342
Formula, Poincare      84
Forster O.      414
Fourier J.      197
Fourier, coefficient      259
Fourier, transform      197
Franken P.      413
Frechet M.      v 53 409 410 417 418 421 425 426 429 431 434
Frechet — Nikodym metric      53 418
Free tagged interval      353
Free tagged partition      354
Freilich G.      84
Freiling C.      87
Fremlm D.H.      53 74 78 80 98 100 235 237 312 325 413 421 434
Friedman H.      209
Fristedt B.      413
Frumkin P.B.      160
Fubini G.      vi 183 185 336 409 429
Fubini theorem      183 185 209 336 409 429
Fukuda R.      169
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте