Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.1
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.1
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Cantelli F.P. 90 430
Cantor G. 30 193 416 417
Cantor, function 193
Cantor, set 30
Cantor, staircase 193
Capiriski M. 413 415
Caratheodary, measurability 41
Caratheodary, outer measure 41
Caratheodory C. v 41 100 409 410 417 418 419 420 421
Cardinal, inaccessible 79
Cardinal, measurable 79
Cardinal, nonmeasurable 79
Cardinal, real measurable 79
Cardinal, two-valued measurable 79
Carleman T. 247
Carlen E. 325
Carleson L. 260
Carleson theorem 260
Carlson T. 61
Carothers N.L. 413 436
Carter M. 425
Cauchy O. 141 428
Cauchy — Bunyakowsky inequality 141 255
Chacon R.V. 434
Chae S.B. 413 415
Chandrasekharan K. 413
Change of variables 194 343
Characteristic function of a measure 197
Characteristic function of a set 105
Characteristic functional 197
Chavel I. 379
Chebyshev inequality 122 405
Chebyshev P.L. 122 260 428 430
Chebyshev — Hermite polynomials 260
Chehlov V.I. 415
CheLidze V.C. 437
Cheney W. 413
Chentsov A.G. 423
Chong K.M. 431
Choquet G. 413 417
Chow Y.S. 413
Cichon J. 421
Ciesielski K. 81 87
Cifuentes P. 415
Cignoli R. 413
Clarkson inequality 325
Clarkson J.A. 325
Class, -additive 33
Class, approximating 13 14
Class, approximating, compact 13 14
Class, Baire 148
Class, compact 13 50 189
Class, Lorentz 320
Class, monocompact 52
Class, monotone 33 48
Closed set 2
Cohn D.L. 413
Coifman R.R. 375
Compact class 13 50 189
Compactness in 321
Compactness in 295 317
Compactness, weak in 285
Compactness, weak in 282
Complete -algebra 22
Complete measure 22
Complete metric space 249
Complete normed space 249
Complete structure 277
Completion of a -algebra 22
Completion of a measure. 22
Complex-valued function 127
Constantinescu C. 413
Continuity from below of outer measure 23
Continuity of a measure at zero 10
Continuity, approximate 369
Continuum Hypothesis 78
conv A 40
Convergence in 128
Convergence in 298
Convergence in measure 111 306
Convergence in the mean 128
Convergence of measures setwise 274 291
Convergence, almost everywhere 110
Convergence, almost uniform 111
Convergence, almost weak in 289
Convergence, weak 281
Convergence, weak in 282
Convex, function 153
Convex, hull of a set 40
Convex, measure 226 378
Convolution of a function and a measure 208
Convolution of integrable functions 205
Convolution of measures 207
Cotlar M. 413
Countable additivity 9 24
Countable additivity, uniform 274
Countable subadditivity 11
Countably generated -algcbra 91
Courrege P. 413
Cover 345
Cram MM. 430
Cramer H. 412
Craven B.D. 413
Criterion of compactness in 295
Criterion, de la Vallee Poussin 272
Criterion, integrability 136
Criterion, measurability 22
Criterion, uniform integrability 272
Criterion, weak compactness 285
Crittenden R.B. 91
Csiszar I. 155
Csornyei M. 234
Cuculescu I. 431
Cylinder 188
Cylindrical set 188
Dalen D. van 417 423
Dameter of a set 212
Danes S. 431
Daniell P.J. viii 417 419 423 429
Darboux G. 416
Darji U.B. 103 164
Darst R.B. 243
David G. 437
Davies R.O. 156 234 235 405
de Barm G. see “Barra G. de”
de Guzman M. see “Guzman M. de”
de la Vallee Poussin Ch.J. see “la Vallec Poussin Ch.J. de”
de Mello E.A. see “Mello E.A. de”
de Possel R. see “Possel R. de”
De Wilde M. 413
Decomposable measure 96 235 313
Decomposition of set functions 218
Decomposition, Hahn 176
Decomposition, Jordan 176 220
Decomposition, Jordan Hahn 176
Decomposition, Lebesgue 180
Decomposition, Lebesgue, of a monotone function 344
Decomposition, Whitney 82
Degree of a mapping 240
Deheuvels P. 413
Delode C. 415
Demidov S.S. 416
Demkowicz L.F. 414
Denjoy A. 370 404 409 417 437 438
Denjoy — Young — Saks theorem 370
Denkowski Z. 413
Denneberg D. 423
Density of a measure 178
Density of a set 366
Density, point 366
Density, Radon — Nikodym 178
Density, topology 370 398
DePree J. 413 437
Derivate 331
Derivative 329
Derivative of a measure with respect to a measure 367
Derivative, approximate 373
Derivative, generalized 377
Derivative, left 331
Derivative, lower 332
Derivative, right 331
Derivative, Sobolev 377
Derivative, upper 332
Descombes R. 413
Determinacy, axiom 80
Dharmadhikari S. 431
DiBenedetto E. 413
Diestel J. 282 285 319 423 433
Dieudonne J. viii 413
Dieudonne theorem viii
Differentiability, approximate 373
Differentiable function 329
Differentiation of measures 367
Dinculeanu N. 423
Dini condition 200
Dini U. 200 416
Dirac measure 11
Dirac P. 11
dist(a, B) 47
Distance to a set 47
Distribution function of a measure 32
Dixmiei J. 413
Dolzenko E.P. 403
Dominated convergence 130
Doob J.L. ix
Dorogovtsev A.Ya. 413 415
Doubling property 375
Douglas R.G. 325
Drewnowski L. 319 423 433
Drinfeld V.G. 422
Dshalalow J.H. 413
Dual space 256 262 281 283 311 313
Dual to 266 313 431
Dual to 266 311 431
Dubins L.E. 435
Dubrovskii V.M. 324 433
Ducel Y. 415
Dudley R.M. 62 228 413 415
Dugac P. 416 432
Dunford N. 240 282 283 321 413 415 421 423 424 431 434 435
Durrett R. 413
Dynkin E.B. 420
Dzhvarsheishvili A.G. 437
D’yachenko M.I. 413 415
E* 262 281 283
E** 281
Earner M. 413
Eaton M.L. 431
Eberlein W.F. 282 434
Eberlein — Smulian theorem 282
Edgar G.A. 413 435 437 438
Edwards R.E. 261 423
Eggleston H.G. 235
Egoroff D.-Th. v 110 417 426 437
Egoroff theorem 110 426
Eisen M. 413
Elstrodt J. 413 415
Ene V. 436
Envelope, closed convex 282
Envelope, measurable 44 56
Equality of Parseval 259
Equimeasurable functions 243
Equivalence of functions 139
Equivalence of measures 178
Equivalent, functions 120 139
Equivalent, measures 178
Erdos P. 90 235 243
Erdos set 422
Escher J. 413
Essential value of a function 166
Essentially bounded function 140
essinf 167
esssup 167 250
Euclidean space 254
Evans C. 379 437
Evans M.J. 103 164
Example, Besicovitch 66
Example, Fichtenholz 233
Example, Kolmogorov 261
Example, Nikodym 210
Example, Vitali 31
Extension of a measure 18 22 58
Extension of a measure, Lebesgue 22
Extension of Lebesgue measure 81
Faber V. 240
Faden A.M. 423
Falconer K.J. 67 210 234 243 421 437
Farrell R.H. 308
Fatou P. 130 131 428
Fatou, lemma 131
Fatou, theorem 131
Federer H. 79 243 312 373 381 413 430 437
FeHermann C. 375
Fejer L. 261
Fejer sum 261
Fejzic H. 87
Feller W. 437
Fernandez P.J. 413
Fichera G. 413
Fichtenholz G. viii 134 234 276 344 391 392 396 411 428 432 433 435
Fichtenholz, example 233
Fichtenholz, theorem viii 271 433
Filter W. 413 422
Finitely additive, set function 9 303
Fink A.M. 429
First mean value theorem 150
Fischer E. 259 404 431
Fleming W. 414
Flohr F. 413
Floret K. 413
Folland G.B. 413
Fomin S.V. vi 62 65 67 412 424
Fominykh M.Yu. 435
Fonda A. 413
For an J. 413
Formula, area 380
Formula, change of variables 343
Formula, coarea 380
Formula, integration by parts 343
Formula, inversion 200
Formula, Newton — Leibniz 342
Formula, Poincare 84
Forster O. 414
Fourier J. 197
Fourier, coefficient 259
Fourier, transform 197
Franken P. 413
Frechet M. v 53 409 410 417 418 421 425 426 429 431 434
Frechet — Nikodym metric 53 418
Free tagged interval 353
Free tagged partition 354
Freilich G. 84
Freiling C. 87
Fremlm D.H. 53 74 78 80 98 100 235 237 312 325 413 421 434
Friedman H. 209
Fristedt B. 413
Frumkin P.B. 160
Fubini G. vi 183 185 336 409 429
Fubini theorem 183 185 209 336 409 429
Fukuda R. 169
Реклама