Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract and Concrete Categories - The Joy of Cats

Авторы: Adamek J., Herrlich H., Stecker G.E.

Язык: en

Рубрика: Математика/Алгебра/Теория категорий/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 524

Добавлена в каталог: 22.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Regular monomorphism vs. section      7.59
Regular monomorphism vs. strict monomorphism      12A
Regular monomorphism vs. topos      28F
Regular monomorphism, composition of      7J 10M 14I 28.6
Regular monomorphism, first factor      14I
Regular projective object      9E
Regular quotient object      7.84
Regular subobject      7.77
Regular subobject vs. intersection      11K
Regular wellpowered category      7.82
Regular wellpowered category vs. category with separator or co-separator      7.89
Regular wellpowered categoryvs. construct      7.88
Regular wellpowered categoryvs. wellpowered category      7.83
Regularly algebraic category      23.35 ff
Regularly algebraic category vs. adjoint functor      23.38
Regularly algebraic category vs. regular factorization      23.39
Regularly algebraic category vs. uniquely transportable functor      23.38
Regularly algebraic category, characterization theorem for      23.38
Regularly algebraic functor      23.35 ff 23E 23M
Regularly algebraic functor, decomposition theorem for      24.2
Regularly algebraic functor, implies associated monad is regular      24.1
Regularly algebraic functor, implies comparison functor is a regular epireflective embedding      24.1
Regularly monadic category, vs. regular factorization      20.30
Regularly monadic functor      20.21 ff 20L
Regularly monadic functor is regularly algebraic      23.36
Regularly monadic functor vs. monadic functor      20.35
Regularly monadic functor vs. solid functor      26.4
Regularly monadic functor, characterization theorem for      20.32
Regularly monadic functor, composition of      24.2
Regularly monadic functor, detects colimits      20.33
Regularly monadic functor, detects extremal co-wellpoweredness      20.31
Relation, congruence, = congruence relation      11.20
Relational category      28H
Represent M-partial morphisms      28.1
Representable extremal partial morphisms      28.19
Representable functor      6.9 6K
Representable functor preserves limits      13.9
Representable functor preserves mono-sources      10.7
Representable functor preserves monomorphisms      7.37
Representable functor vs. adjoint functor      18C
Representable functor vs. duality      10N
Representable functor vs. free object      8.23
Representable M-partial morphisms, vs. topological category      28.12
Representable partial morphisms vs. final sinks are reducible      28.15
Representable partial morphisms vs. topological category      28.15
retract      7.24
Retract in an isomorphism-closed full reflective subcategory      7.31
Retract vs. injective object      9.5
Retract, absolute      9.6
Retraction      7.24 ff
Retraction is epimorphism      7.42
Retraction is pullback stable      11.18
Retraction is regular epimorphism      7.75
Retraction preserved by all functors      7.28
Retraction preserved by products      10.35
Retraction reflected by full, faithful functor      7.29
Retraction vs. (E, M)-structured category      14.9
Retraction vs. product      10.28
Retraction vs. projection morphism      10.27
Retraction vs. quotient morphism      8.12
Retractionas monomorphism means isomorphism      7.36
Retractionpreserved and reflected by equivalence functor      7.47
Right adjoint, = adjoint      19.11
Right inverse of a morphism, vs. left inverse      3.10
Russell's paradox      2.2 2.3 3.51 3L
Satisfaction of an implication, = e-injective      16.11 16.12
Satisfaction of topological (co-)axiom      22.1 22.6
Scheme, = domain of a diagram      11.1
Section      7.19 ff 7E
Section as epimorphism is isomorphism      7.43
Section is (regular) monomorphism      7.35 7.59
Section preserved by all functors      7.22
Section preserved by products      10.35
Section reflected by full, faithful functor      7.23
Section vs. embedding      8.7
Section vs. equivalence functor      7.47
Section vs. intersection      11K
Section vs. monomorphism      7P
Section vs. pullback      11H
Self-adjoint endofunctor      19G
Self-dual concept      3.7. See also Pulation square
Self-dual properties for functors      3.43
Semifinal arrow, for a structured sink      25.8 25C
Semifinal solution, for a structured sink      25.7 25C
Separating set      7.14
Separating set vs. concretizable category      7Q
Separator      7.10 ff
Separator vs. (co)wellpoweredness and (co)complete- ness      12.13
Separator vs. bicoreflective subcategory      16.4
Separator vs. faithful hom-functor      7.12
Separator vs. topological category      21.16 21.17
Separator, category with, is regular (co-)wellpowered      7.89
Separator, extremal      10.63
Set is a (small) class      2.2
Set, constructions that can be performed with sets      2.1
Set, morphism class of small category is a set      3.45
Set, separating, = separating set      7.14
Set, underlying, = underlying set      see Forgetful functor
Set-indexed family of sets      2.2
Set-indexed source      10.2
Set-valued functor vs. hom-functor      6.18
Set-valued functor vs. natural transformation      6.18
Singleton-morphism      28.11
Sink      10.62 ff
Sink, costructured      17.4
Sink, final      10.63 28.15
Sink, natural      11.27
Situation, adjoint, = adjoint situation      19.3 ff
Skeleton of a category      4.12—4.15 4I
Small category      3.44. See also Fibre-small
Small category is a set      3.45
Small class      2.2
Small conglomerate      2.3
Small object-free category      3.55
Small source      10.2
Smallest containing E-reflective subcategory, = E-reflective hull      16.20 16.21
Smallest injective extension      9.20
Smallest injective extension vs. minimal injective extension      9G
Smallness of hom-class condition      see Object-free category
Solid concrete category      25.10 ff
Solid concrete category is almost topologically algebraic      25.18 25.19
Solid concrete category vs. (co)complete category      25.15 25.16
Solid concrete category vs. Mac Neille completion      25G
Solid concrete category vs. subcategory of topological category      26.2
Solid concrete category vs. topological category      25J
Solid concrete category, characterization theorems      25.19 25I
Solid concrete category, structure theorem      26.7
Solid construct, need not be topologically algebraic nor strongly cocomplete      25.17
Solid functor      25.10 ff
Solid functor detects colimits and preserves and detects limits      25.14
Solid functor is almost topologically algebraic      25.18 25.19
Solid functor is faithful and adjoint      25.12
Solid functor preserves extremal monomorphisms      25.21
Solid functor vs. adjoint functor      25.12 25.19
Solid functor vs. detection and preservation of limits      25.18 25.19
Solid functor vs. essentially algebraic functor      26.3
Solid functor vs. faithful functor      25.12
Solid functor vs. full reflective embedding      26.1
Solid functor vs. monadic functor      25F
Solid functor vs. regularly monadic functor      26.4
Solid functor vs. topological functor      26.1 26.3 26.4
Solid functor vs. topologically algebraic functor      25D 25E 26.1
Solid functor, composite of topological and essentially algebraic functors      26.3
Solid functor, composite of topological and regularly monadic functors      26.3
Solid functor, composite of topologically algebraic functors      26.1
Solid functor, composition of      25.13
Solid functor, topologically algebraic functor is      25.11
Solution set condition      18.12
Source      10.1 ff
Source, codomain of      10.1
Source, composite of      10.3
Source, domain of      10.1
Source, empty      10.2
Source, initial, = initial source      10.41 10.57
Source, natural      11.3
Source, notation for      10.2 10.4
Source, set-indexed      10.2
Source, small      10.2
Source, structured, w.r.t. a functor      17.1
Split coequalizer      20.14
Split epimorphism, = retraction      7.24 ff
Split fork      20.14
Split monomorphism, = section      7.19 ff
Square, commutes      3.4
Square, pulation      11.32 11.33 11Q
Square, pullback, = pullback square      11.8 ff
Stability under pullbacks      11.17 28.13
Stable epimorphism      11J
Stable epimorphism vs. adjoint functor      18I
Statement, dual, = dual statement      3.7
Stone-functor      3.20(11)
Strict monomorphism      7D
Strict monomorphism vs. other types of monomorphisms      7.76
Strict monomorphism vs. pullback      11H
Strict monomorphism vs. regular monomorphism      12A
Strong fibre-smallness      26D
Strong monomorphism      7.76 14C
Strongly cocomplete category      12.2
Strongly cocomplete category is (Epi, ExtrMono-Source)-category      15.17
Strongly cocomplete category vs. (co)complete category      12.5 12I 12N 12O
Strongly complete category      12.2
Strongly complete category is (E, M)-structured      14.21
Strongly complete category vs. (co)complete category      12.5 12I 12N 12O
Strongly complete category vs. (E, M)-category      15.25 15.26
Strongly complete category vs. free monad & varietor      20.59
Strongly fibre-small concrete category      26.5
Strongly generating structured arrow      25.4
Strongly generating structured arrow is generating      25.5
Strongly limit-closed subcategory, vs. epireflective subcategory      16L
Strongly n-generating object      20H
Structure, factorization: for morphisms      14.1 ff
Structure, factorization: for sources      15.1 ff
Structure, factorization: w.r.t. a functor      17.3 ff
Structured 2-source, factorizations of      17F
Structured arrow      8.15
Structured arrow, (extremally) generating, vs. (extremal) epimorphism      8.36
Structured arrow, equivalence for      26.5
Structured arrow, generating, = generating structured arrow      8.15
Structured arrow, isomorphic      8.19 8.34
Structured arrow, strongly generating      25.4 25.5
Structured arrow, universal      8.30
Structured arrow, w.r.t. a functor      8.30
Structured source, notation for      17.2
Structured source, self-indexed      17.2
Structured source, w.r.t. a functor      17.1
Subcategory      4.1 ff
Subcategory of a functor-costructured category vs. topological category      22.8
Subcategory of a functor-structured category vs. (M-) topological category      22.3 22.4 22.9
Subcategory vs. identities      4A
Subcategory, algebraic, = algebraic subcategory      23.32
Subcategory, bireflective      16.1 16.3
Subcategory, colimit-closed      13I
Subcategory, colimit-dense, = colimit-dense subcategory      12.10
Subcategory, concrete      5.21 ff
Subcategory, coreflective, = coreflective subcategory      4.25 16.1
Subcategory, definable by topological (co-)axioms      22.1 22.3 22.4 22.6
Subcategory, dense      12D
Subcategory, E-equational      16.16
Subcategory, E-reflective      16.1
Subcategory, epireflective      16.1
Subcategory, extremally epireflective      16.1
Subcategory, finally closed      21.29
Subcategory, finally dense      10.69 10.69
Subcategory, full      4.1(2) ff
Subcategory, implicational      16.12
Subcategory, initially closed      21.29
Subcategory, initially dense      10.69
Subcategory, isomorphism-dense      4.9
Subcategory, limit-closed      13.26 13.27 13I 13J
Subcategory, limit-dense      12E
Subcategory, M-initially closed, vs. concretely E-reflec- tive subcategory      22.9
Subcategory, monadic, conditions for      20.19
Subcategory, monoreflective      16.1
Subcategory, nonfull      4.3(3)
Subcategory, of subcategories      4G
Subcategory, reflective, = reflective subcategory      4.16 16.1
Subcategory, regular epireflective      16.1
Subcategory, simultaneously reflective and coreflective      4E
Subcategory, topological, = topological subcategory      21.29 ff
Subconstruct      5.21
Subconstruct of a functor-structured construct, vs. monotopological construct      22.10
Subconstruct of Set vs. concretely cartesian closed construct      27.16
Subobject      7.77 ff
Subobject vs. M-subobject      16.8
Subobject, extremal, = extremal subobject      7.77
Subobject, initial, = initial subobject      8.6
Subobject, intersection of      11.23
Subobject, non-isomorphic      7K
Subobject, order on      7.79
Subobject, regular, = regular subobject      7.77
Subset      2.1. See also Power set
Swell epimorphism      7.76 15A
Swell separator      19K
T-algebra      5.37
T-algebra, category of      20.4 5G
T-algebra, category of, closed under the formation of mono-sources      20.11
T-algebra, category of, three-step construction      20.6
T-homomorphism      5.37
T-space      5.40 5H
Taut lift theorem      21.28
Terminal category      3.3(4)
Terminal object      7.4
Terminal object uniqueness      7.6
Terminal object vs. product      10.20 10.30 10H
Terminal object vs. pullback square      11.13
Terminal object vs. weak terminal object      12.9
Terminal, weakly terminal set of objects      12F
Thin category      3.26
Thin category vs. faithful functor      3.29 3G
Thin quasicategory      3.51
Topological (co-)axiom      22.6
Topological axiom      22.1
Topological characterization theorems, external      21.21
Topological characterization theorems, internal      21.18
Topological concrete category      21.7 ff
Topological concrete category is fibre-complete      21.11
Topological concrete category vs. (co)completeness      21.16 21.17
Topological concrete category vs. (E, M)-category      21.14
Topological concrete category vs. (E, M)-factorization      21.16 21.17
Topological concrete category vs. co-wellpoweredness      21.16 21.17
Topological concrete category vs. concretely cartesian closed subcategory      27.15
Topological concrete category vs. concretely reflective subcategory      21.32
Topological concrete category vs. coseparator      21.16 21.17
Topological concrete category vs. discrete object      21.11
Topological concrete category vs. extremal morphism      21.13
Topological concrete category vs. final lift      21.34
Topological concrete category vs. finally dense subcategory      21.32
Topological concrete category vs. has function spaces      27.22
Topological concrete category vs. indiscrete object      21.11 21.35
Topological concrete category vs. initial lift      21.34
Topological concrete category vs. initial subobjects      21.35
Topological concrete category vs. initially closed subcategory      21.30 21.31
Topological concrete category vs. injective object      21.21
Topological concrete category vs. lift of an adjoint situation      21.28
Topological concrete category vs. representable (M-)partial morphisms      28.12 28.15
Topological concrete category vs. separator      21.16 21.17
Topological concrete category vs. solid category      25J
Topological concrete category vs. subcategory of a functor-(co)structured category      22.3 22.4 22.8
Topological concrete category vs. wellpoweredness      21.16 21.17
Topological concrete category, characterization      21C
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте