Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract and Concrete Categories - The Joy of Cats

Авторы: Adamek J., Herrlich H., Stecker G.E.

Язык: en

Рубрика: Математика/Алгебра/Теория категорий/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 524

Добавлена в каталог: 22.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Injective hull      9.16
Injective hull for finitary varieties      16J
Injective hull vs. enough injectives      9D
Injective hull, existence      9C
Injective hull, uniqueness      9.19
Injective hull, w.r.t. a class of morphisms      9.22
Injective morphism vs. initial morphism      8B
Injective object      9.1
Injective object in CAT, vs. topological category      21.21
Injective object in topological construct      28A
Injective object is an absolute retract      9.7
Injective object preserved by product      10.40
Injective object vs. essential extension      9.15
Injective object vs. maximal essential extension      9F
Injective object vs. reflective subcategory      9.25
Injective object vs. retract      9.5
Injective object, characterization      9B
Injective object, terminal object is      9.4
Injective object, w.r.t. a class of morphisms      9.22
Injective, enough      9.9 15H
Injectivity class      9.26
Insertion of generators      19.4
Intersection of subobjects      11.23
Intersection of subobjects as pullback      11F
Intersection of subobjects vs. (E, M)-structured category      14.15
Intersection of subobjects vs. (Epi, ExtrMono)-structured category      14.19
Intersection of subobjects vs. isomorphism      11.25
Intersection of subobjects vs. limit      11.25
Intersection of subobjects vs. regular subobject & section      11K
Intersection of subobjects, closure under the formation of      11.26
Intersection of subobjects, existence      12.1
Intersection, of a family of sets      2.1
Inverse functor, unique determination      3.25
Inverse image, of a subject      11.19
Inverse limit      11.4
Inverse of a morphism      3.8
Inverse of a morphism, uniqueness      3.11
Inverse of a morphism, “is equivalent to”, is equivalence relation on categories      3.34
Inverse of a morphism, “is isomorphic to” is an equivalence relation on categories      3.25
Inverse of an isomorphism, notation      3.12
Iso-transformation      6.5
Isomorphic categories      3.24 3.25
Isomorphic categories vs. equivalent categories      3.35
Isomorphic objects      3.15
Isomorphic objects, yields equivalence relation on the object class      3.16
Isomorphic structured arrows      8.19 8.34
Isomorphic, concretely      5.12
Isomorphic, naturally      6.5
Isomorphic, “is isomorphic to” is an equivalence relation on categories      3.25
Isomorphism      3.8 ff 3F
Isomorphism functor      3.24
Isomorphism functor is isomorphism in CAT      3.51
Isomorphism functor, closed under composition      3.30
Isomorphism in a category, vs. isomorphic objects      3.15
Isomorphism vs. (E, M)-category      15.5
Isomorphism vs. coequalizer      7.70
Isomorphism vs. epimorphism      7.43 7.66
Isomorphism vs. equalizer      7.54
Isomorphism vs. extremal monomorphism      7.66
Isomorphism vs. final morphism      8.14
Isomorphism vs. identity morphism      3.13
Isomorphism vs. initial morphism      8.14
Isomorphism vs. intersection      11.25
Isomorphism vs. monomorphism      7.36
Isomorphism vs. product source      10.26
Isomorphism vs. retraction      7.36
Isomorphism vs. section      7.43
Isomorphism, composite of, is an isomorphism      3.14
Isomorphism, concrete      5N
Isomorphism, creation      13.35 13M
Isomorphism, functor is isomorphism iff full, faithful, and bijective on objects      3.28
Isomorphism, functors need not reflect      3.22
Isomorphism, Galois      6.26
Isomorphism, inverse is an isomorphism      3.14
Isomorphism, is 1-product      10.20
Isomorphism, natural      6.5
Isomorphism, non-concrete      5B
Isomorphism, preserved and reflected by equivalence functor      7.47
Isomorphism, preserved by functors      3.21
Isomorphism, preserved by products      10.35
Isomorphism, reflection of      13.35 13F
Isomorphism-closed (full) subcategory      4.9 4B
Isomorphism-closed full subcategory, vs. limit-closed      13.27
Isomorphism-dense full subcategory      4.9 4.10 4.12
Isomorphism-dense functor      3.33
Kernel      7C
Kernel vs. pullback      11E
Kleisli category      20.39 20B
Large category      3.44
Large class      2.2
Largest essential extension      9.20
Left adjoint, = co-adjoint      19.11
Left inverse of a morphism, vs. right inverse      3.10
Legitimate conglomerate      2.3
Legitimate quasicategory      6.16
Lifting of (E, M)-factorizations vs. E-monadic functor      20.24
Lifting of (E, M)-factorizations, uniquely      20.23
Lifting of (Extremal Epi, Mono-Source)-factorizations uniquely, vs. algebraic category      23.31
Lifting of an adjoint situation      21.26
Lifting of an adjoint situation vs. topological category      21.28
Lifting of colimits      13.17
Lifting of limits      13.17
Lifting of limits vs. amnesticity      13.21
Lifting of limits vs. create limits      13.20
Lifting of limits vs. detect limits      13.34
Lifting of limits vs. preserve small limits      13.19
Lifting of limits vs. reflect limits      13.23
Lifting of limits vs. transportability      13E
Lifting of limits, uniquely, and reflect limits, vs. create limits      13.25
Limit (of a diagram)      11.3 ff
Limit (of a diagram) construction via large colimits      12.7
Limit (of a diagram) creation      13.17
Limit (of a diagram) detection, = detection of limit      13.22
Limit (of a diagram) is extremal mono-source      11.6
Limit (of a diagram) vs. factorization      14.16
Limit (of a diagram) vs. hom-functors      13H
Limit (of a diagram) vs. initial object      11A
Limit (of a diagram) vs. intersection      11.25
Limit (of a diagram) vs. pullback square      11.9
Limit (of a diagram) vs. reflective subcategory      13.28
Limit (of a diagram), concrete, = concrete limit      13.12
Limit (of a diagram), inductive      11.28
Limit (of a diagram), inverse      11.4
Limit (of a diagram), lifting of      13.17 13D 13E
Limit (of a diagram), lifting of vs. topological functor      21.15
Limit (of a diagram), preservation of, = preservation of limit      13.1 ff 13B
Limit (of a diagram), preservation of, vs. preservation of monos      13.5
Limit (of a diagram), preservation of, vs. preservation of strong limits      13.1
Limit (of a diagram), preservation of, vs. topological functor      21.15
Limit (of a diagram), projective      11.4 11B
Limit (of a diagram), reflection of      13.22 13G 17.13
Limit (of a diagram), uniqueness      11.7
Limit-closed subcategory      13.26 13I 13J
Limit-closed subcategory vs. isomorphism-closed subcategory      13.27
Limit-dense subcategory, rarity      12E
Locally presentable category      20H
M-action, category of all M-actions and action homomorphisms      3.26
M-actions as functors from a monoid M to Set      3.20(13)
M-initially closed subcategory, vs. concretely E-reflective subcategory      22.9
M-reducible      28.13
M-sources, closed under the formation of      16.7
M-subobject, = singleton M-source      16.8
M-topological category      21.38 ff
M-topological category is E-reflective in some topological category      21.40
M-topological category vs. subcategory of a functor-structured category      22.9
M-topological category, characterization theorem      21.40
M-topological category, fibre-small, characterization      22.9
M-topological functor      21K
M-topological structure theorem      22.9
M-topos      28.7
M-transformation      6.5
Mac Neille completion      21H
Mac Neille completion, vs. solid category      25G
Map, quotient, = quotient map      9.27
Matching condition      see Object-free category
Maximal essential extension      9.20
Maximal essential extension vs. injective object      9F
Minimal injective extension      9.20
Minimal injective extension vs. smallest injective extension      9G
Modification, amnestic, = amnestic modification      5.6 5.33 5.34 5F
Modifications of structure, vs. (co)reflective subcategory      4.17 4.26
Monad      20.1 ff
Monad gives rise to an adjoint situation      20.7
Monad morphism      20.55
Monad on Set is finitary if and only if the associated construct is finitary      24.6
Monad on Set is regular      20.22
Monad, associated with an adjoint situation      20.3 20A
Monad, finitary      24.4
Monad, idempotent      20F
Monad, regular      20.21
Monad, trivial      20.2
Monad, with rank      20G
Monadic concrete category      20.8 ff
Monadic concrete category vs. (Epi, Mono-Source)-factorization      20.49
Monadic concrete category vs. adjoint functor      20.46
Monadic concrete category vs. co-wellpoweredness      20.29
Monadic concrete category vs. concrete functor      20E
Monadic concrete category vs. essentially algebraic category      23.16
Monadic concrete category vs. extremal co-wellpoweredness      20.48
Monadic concrete category vs. factorization structure      20.28
Monadic concrete category vs. final morphism      20.28
Monadic concrete category vs. finitary variety      24.7
Monadic concrete category vs. monadic subcategory      20.19
Monadic concrete category vs. reflective subcategory      20.18
Monadic concrete category vs. varietor      20.56 20.57 20.58
Monadic concrete category, $\cong$ its associated category of algebras      20.40
Monadic concrete category, cocompleteness of      20D
Monadic concrete category, properties of      20.12
Monadic construct      20.34 ff
Monadic construct, bounded, vs. bounded variety      24.11
Monadic construct, characterization theorem for      20.35
Monadic construct, is complete, cocomplete, wellpowered, co-wellpowered, and has regular factorizations      20.34
Monadic construct, is regularly algebraic      23.37
Monadic construct, vs. algebraic construct      23.41
Monadic construct, vs. coequalizer of congruence relation      20.35
Monadic construct, vs. creation of finite limits      20.35
Monadic functor      20.8 ff
Monadic functor creates absolute colimits      20.16
Monadic functor need not detect colimits      20.47
Monadic functor need not reflect regular epimorphisms      20.52
Monadic functor regularly, = regularly monadic functor      20.21 ff
Monadic functor vs. colimit      20.13
Monadic functor vs. essentially algebraic functor      23C
Monadic functor vs. extremal monomorphism      20O
Monadic functor vs. order preserving map      20N
Monadic functor vs. preservation of extremal epimorphisms      20.50
Monadic functor vs. preservation of regular epimorphisms      20.50
Monadic functor vs. regularly monadic functor      20.32 20.35
Monadic functor vs. solid functor      25F
Monadic functor, characterization theorem for      20.17
Monadic functor, composition of, need not be monadic      20.45
Monadic functor, deficiencies of      20.45 ff
Monadic functor, properties of      20.12
Monadic subcategory, vs. monadic category      20.18
Monadic towers      20J
Mono-source      10.5 ff
Mono-source characterization      10A
Mono-source is extremal in balanced category      10.12
Mono-source is initial vs. essentially algebraic functor      23.2
Mono-source is initial vs. monadic category      20.12
Mono-source is initial vs. reflection of limits      17.13 17.14
Mono-source preservation implied by (Generating, —)-factorization for 2-sources      17.12
Mono-source preservation, by representable functors      10.7
Mono-source preserved by composition      10.9
Mono-source preserved by first factor      10.9
Mono-source reflection, by faithful functors      10.7
Mono-source vs. (E, M)-category      15.6—15.9
Mono-source vs. balanced category      10.12
Mono-source vs. initial source      17.13
Mono-source vs. monomorphism      10.26
Mono-source vs. point-separating source      10.8 10T
Mono-source vs. preservation of limits      13.5
Mono-source vs. pushout      11P
Mono-source vs. subsource      10.10
Mono-source, extremal, = extremal mono-source      10.11
Mono-transformation      6.5 7R
Monoid (as a category)      3.3(4)
Monomorphism      7.32 ff
Monomorphism as retraction means isomorphism      7.36
Monomorphism is pullback stable      11.18
Monomorphism preserved and reflected by equivalence functor      7.47
Monomorphism preserved by products      10.35
Monomorphism preserved by representable functor      7.37
Monomorphism vs. (E, M)-structured category      14.9
Monomorphism vs. coequalizer      7.70
Monomorphism vs. congruence relation      11.20 11R
Monomorphism vs. embedding      8.7
Monomorphism vs. free object      8.28 8.29
Monomorphism vs. mono-source      10.26
Monomorphism vs. preservation of limits      13.5
Monomorphism vs. pullback square      11.15 11.16
Monomorphism vs. regular monomorphism      7O
Monomorphism vs. section      7.35 7P
Monomorphism, closed under composition      7.34
Monomorphism, extremal, = extremal monomorphism      7.61 ff
Monomorphism, normal      7C
Monomorphism, reflected by faithful functor      7.37
Monomorphism, regular, = regular monomorphism      7.56 ff
Monomorphism, split, = section      7.19 ff
Monomorphism, strict, = strict monomorphism      7.76 7D
Monomorphism, types of      7.76
Monoreflective subcategory      16.1
Monoreflective subcategory, is bireflective      16.3
Monotopological category      21.38 ff
Monotopological construct vs. concrete products      21.42
Monotopological construct vs. initial subobjects      21.42
Monotopological construct, characterization of fibre-small      22.10
Monotopological constructvs. subconstruct of a functor-structured construct      22.10
Morphism      3.1 ff
Morphism class as corresponding object-free category      3.54
Morphism class of a category      3.2
Morphism class of small category is a set      3.45
Morphism in an object-free category      3.53
Morphism, (co)domain of      3.2
Morphism, coessential      9.27
Morphism, composite of      see Composition of morphisms
Morphism, constant      7A 10W
Morphism, diagonal      10V 10W
Morphism, epi-      see Epimorphism
Morphism, evaluation      27.2
Morphism, exponential      27.2
Morphism, final, = final morphism      8.10 ff
Morphism, initial, = initial morphism      8.6 ff
Morphism, isomorphism      3.8
Morphism, mono-      see Monomorphism
Morphism, partial      28.1
Morphism, product of      10.34
Morphism, quotient, = quotient morphism      8.10
Morphism, retraction      7.24 ff
Morphism, section      7.19 ff
Morphism, zero      7A
Multiple equalizer      11.4
Multiple pullback      11L—11N 12C
Multiple pullback preservation      13A
n-th power functor      3.20(10)
n-tuple of sets or classes      2.1 2.2
Natural equivalence, = natural isomorphism      6.5
Natural isomorphism      6.5
Natural numbers      2.1
Natural sink      11.27
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте