Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract and Concrete Categories - The Joy of Cats

Авторы: Adamek J., Herrlich H., Stecker G.E.

Язык: en

Рубрика: Математика/Алгебра/Теория категорий/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 524

Добавлена в каталог: 22.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Natural source      11.3
Natural source is natural transformation      11.5
Natural transformation      6.1 ff
Natural transformation vs. composition of functors      6.3
Natural transformation vs. opposite functor      6.3
Natural transformation vs. Set-valued functor      6.18
Natural transformation, cardinality of      6B
Natural transformation, composition      6.13 6A
Natural transformation, concrete      6.23 6.24
Natural transformation, identity-carried, = concrete natural transformation      6.23
Natural transformation, M-transformation      6.5
Naturality condition      6.1
Naturally isomorphic      6.5
Neighborhood space      5N
Normal monomorphism      7C
Object      3.1 ff
Object class of a category      3.1 3.2
Object class of a category vs. identity morphisms      3.19
Object, copower of      10.63
Object, discrete, = discrete object      8.1
Object, equivalent to another, in a concrete category      5.4
Object, free, = free object      8.22
Object, indiscrete, = indiscrete object      8.3
Object, initial, = initial object      7.1
Object, injective, = injective object      9.1
Object, isomorphic      3.15 3.16
Object, power      27.2
Object, power of      10.37
Object, projective, = projective object      9.27
Object, quotient, = quotient object      7.84 ff
Object, terminal, = terminal object      7.4
Object, zero      7.7 27A
Object-free category      3.53
Object-free category, corresponding to a category      3.54 3.55
Object-free functor      3.55
Opposite category      3.5
Opposite category vs. contravariant hom-functor      3.20(5)
Opposite category vs. contravariant power-set functor      3.20(9)
Opposite category vs. dual functor for vector spaces      3.20(12)
Opposite category vs. Stone-functor      3.20(11)
Opposite category, dually equivalent means opposite category is equivalent      3.38
Opposite functor      3.41
Opposite functor vs. Galois connection      6.27 (2)
Opposite functor vs. natural transformation      6.3
Order on concrete functors      5.18
Order on concrete functors vs. concretely reflective subcategory      5.26
Order on objects, in a concrete category      5.4 5.5
Order preserving map vs. monadic functor      20N
Order preserving map, = morphism in Pos      4.3
Ordered pair of sets      2.1
Partial binary algebra      3.52
Partial binary operation      3.52
Partial morphism      28.1
Point-separating source      10.5
Point-separating source vs. mono-source      10.8 10T
Pointed category      3B 7B
Posets, category of      4.3
Posets, category of, down-directed & up-directed      11.4
Power (of an object)      10.37
Power (of an object) vs. coseparator      10.38
Power (of an object), comparison of      10K
Power (of an object)with discrete exponent is product, vs. cartesian closed topological construct      27.24
Power object      27.2
Power-set functor      3.20(8) 3.20(9)
Power-set functor vs. adjoint functor      18E
Power-set functor, representability of      6F
Power-set monad      20.2
Power-set, = set of all subsets      2.1
Power-set-morphism      28.11
Preimage-morphism      28.11
Preorder relation on the fibres, in a concrete category      5.5
Preordered class, as a category      3.3(4)
Preservation and reflection of mono-sources, vs. free object      18.10
Preservation and reflection vs. monadic functor      20.12
Preservation of coequalizers      13.1
Preservation of colimits      13.1
Preservation of coproducts      13.1
Preservation of equalizers      13.1 13.3
Preservation of extremal epimorphisms, vs. monadic functor      20.50
Preservation of initial sources      10.47
Preservation of initial sources vs. finally dense subcategory      10.71
Preservation of limits & colimits      §13
Preservation of limits vs. adjoint functor      18.12 18.14 18.17 18.19
Preservation of limits vs. embedding      13.11
Preservation of limits vs. hom-functor      13.7
Preservation of limits vs. monomorphism & mono-source      13.5
Preservation of limits vs. representable functor      13.9
Preservation of limits vs. solid functor      25.14
Preservation of limits, adjoint functor does      18.9
Preservation of mono-sources, implied by (Generating, —)-factorization for 2-sources      17.12
Preservation of products      13.1 13.3
Preservation of pullbacks      13.3
Preservation of regular epimorphisms, vs. (regularly) monadic functor      20.32 20.50
Preservation of small limits, vs. lift limits      13.19
Preservation of strong limits, vs. (ExtrGen, Mono-Source) functor      17.11 17H
Preservation of terminal object      13.3
Pretopological space      5N
Product (of morphisms)      10.34
Product (of object) with discrete factors are coproducts, vs. cartesian closed topological construct      27.24
Product (of objects)      10.19 ff
Product (of objects) and pullback square, vs. equalizer      11.11 11.14
Product (of objects) existence      10.29 10I 12.1
Product (of objects) for Banach spaces      10J
Product (of objects) in abelian groups      10G
Product (of objects) is extremal mono-source      10.21
Product (of objects) of pairs      10.30
Product (of objects) preserved by first mono-factor      10.56
Product (of objects) vs. (E, M)-structured category      14.15
Product (of objects) vs. empty source      10.20
Product (of objects) vs. equalizer      10.36
Product (of objects) vs. finite product      11B
Product (of objects) vs. first factor      10.25
Product (of objects) vs. hom-functor      10E 10F
Product (of objects) vs. isomorphism      10.20
Product (of objects) vs. projective limit      11B
Product (of objects) vs. pullback square      11.13 11C 11D
Product (of objects) vs. retraction      10.28
Product (of objects) vs. terminal object      10.20 10.30 10H
Product (of objects), characterization      10Q
Product (of objects), composition of      10.25
Product (of objects), concrete, = concrete product      10.52 13.12
Product (of objects), notation for      10.23
Product (of objects), preservation of      13.1
Product (of objects), uniqueness      10.22
Product category      3.3(4)
Product of epimorphisms, vs. cartesian closed category      27.8
Product source, vs. isomorphism      10.26
Projection morphism      10.23
Projection morphism vs. retraction      10.27
Projective cover      9.27
Projective hull, w.r.t. a class of morphisms      9.27
Projective limit      11.4
Projective limit vs. (finite) product      11B
Projective object      9.27
Projective object vs. free object      9.29 9.30
Projective object, extremal, in algebraic category      23.28 23.29
Projective object, regular      9E
Projective object, w.r.t. a class of morphisms      9.27
Proper class      2.2. See also Large category
Proper quasicategory      3.50 3.51
Proper quasicategory, quasicategory of all categories is      3.51
Property of objects, as (isomorphism-closed) full subcategory      4.8
Property, dual      3.7
Property, universal      4.16 4.25
Pulation square      11.32 11Q
Pulation square vs. congruence relation      11.33
Pullback      11.8 ff. See also Pullback square
Pullback of a 2-sink      11.8
Pullback of a morphism      11.8
Pullback of a sink along a morphism      28.13
Pullback square      11.8 ff. See also Pullback
Pullback square and product vs. equalizer      11.14
Pullback square vs. equalizer and product      11.11
Pullback square vs. extremal mono-source      11.9
Pullback square vs. limit      11.9
Pullback square vs. monomorphism      11.15 11.16
Pullback square vs. product      11.13
Pullback square vs. terminal object      11.13
Pullback square, cancellation of      11.10 11.15
Pullback square, composition of      11.10
Pullback stable      11.17 28.13
Pullback vs. (E, M)-structured category      14.15
Pullback vs. epi-sink      11I
Pullback vs. equalizer      11S
Pullback vs. kernel      11E
Pullback vs. product      11C 11D
Pullback vs. section      11H
Pullback vs. strict monomorphism      11H
Pullback, closure under the formation of      11.17
Pullback, existence      12.1
Pullback, multiple      11L—11N
Pushout      11.30 ff
Pushout of a 2-source      11.30
Pushout square      11.30 ff
Pushout square vs. coequalizer      11.33
Pushout vs. (E, M)-category      15.14 15.15 15.16
Pushout vs. mono-source      11P
Pushout, existence      12.1
Quasicategory      3.49 ff
Quasicategory of all categories, is not a category      3.5 3.51
Quasicategory of all object-free categories      3.55
Quasicategory of all quasicategories, yields Russell-like paradox      3.51 3L
Quasicategory vs. hom-functor      3.51
Quasicategory, (il)legitimate      6.16
Quasicategory, category is      3.51
Quasicategory, functor quasicategory      6.15 6H
Quasicategory, proper      3.50 3.51
Quasicategoryof all concrete categories over a given base category      5.14 5.15
Quasiconstruct of quasitopological spaces      5.6
Quasitopos      28.7
Quasitopos is (Epi, RegMono)-structured      28.10
Quasivariety, = algebraic construct      24.12
Quasivariety, finitary, = finitary quasivariety      16.12
Quotient map      9.27
Quotient map, coessential      9.27
Quotient morphism      8.10
Quotient morphism vs. (regular) epimorphism & retraction      8.12
Quotient morphism vs. extremal epimorphism      23G
Quotient morphism, composition & first factor of      8.13
Quotient object      7.84 ff
Quotient object, extremal, = extremal quotient object      7.84
Quotient object, order on      7.85
Quotient object, regular, = regular quotient object      7.84
Rational & real numbers      2.1
Realization = full, concrete embedding      5O
Reflection      See also Reflector
Reflection arrow      4.16 ff
Reflection arrow vs. colimit      13.30
Reflection arrow, uniqueness      4.19
Reflection of (extremal) epimorphisms      17.13
Reflection of (extremal) epimorphisms vs. adjoint situation      19.14
Reflection of (extremal) epimorphisms vs. essentially algebraic functor      23.2
Reflection of (extremal) epimorphisms vs. faithful functor      19.14
Reflection of (extremal) epimorphisms vs. monadic functor      20.12
Reflection of colimits      13.22
Reflection of equalizers      17.13
Reflection of equalizers vs. essentially algebraic functor      23.2
Reflection of equalizers vs. faithful functor      13.24 17.13 17.14
Reflection of equalizers vs. reflection of limits      17.13 17.14
Reflection of identities, vs. creation of isomorphisms      13.36
Reflection of isomorphisms      13.35
Reflection of isomorphisms vs. (Generating, Mono-Source)-factoriza- tions of 2-sources      17.13
Reflection of isomorphisms vs. creation of isomorphisms      13.36
Reflection of isomorphisms vs. creation of limits      13.25
Reflection of isomorphisms vs. essentially algebraic functor      23.2
Reflection of isomorphisms vs. reflection of limits      17.13 17.14
Reflection of isomorphisms, functors need not      3.22
Reflection of limits      13.22 13G 17.13
Reflection of limits vs. essentially algebraic functor      23.2
Reflection of limits vs. lifting of limits      13.23
Reflection of limits vs. mono-sources are initial      17.13 17.14
Reflection of limits vs. reflection of equalizers      17.13 17.14
Reflection of limitsvs, reflection of isomorphisms      17.13 17.14
Reflection of products vs. faithful functor      10.60
Reflection of regular epimorphisms vs. initiality of mono-sources      19.14
Reflection, concrete      5.22 5E
Reflection, Galois      6.26
Reflective embedding, misbehaved      13K
Reflective modification, of a concrete category      5.22 5K
Reflective subcategory      4.16 16D 16E
Reflective subcategory of a functor-structured category, vs. cocomplete category that has free objects      26.8
Reflective subcategory of special categories      4D
Reflective subcategory vs. adjoint situation      19.4
Reflective subcategory vs. cartesian closed subcategory      27.9
Reflective subcategory vs. cocomplete subcategory      12K
Reflective subcategory vs. colimit-closed subcategory      13.29
Reflective subcategory vs. detection of colimits      13.32
Reflective subcategory vs. E-monadic subcategory      20.25
Reflective subcategory vs. injective objects      9.25
Reflective subcategory vs. limits      13.28
Reflective subcategory vs. monadic category      20.18
Reflective subcategory, characterization of fullness      4.20
Reflective subcategory, embedding of, preserves and reflects mono-sources      18.7
Reflective subcategory, full      4.20 7F
Reflective subcategory, intersections      4F
Reflective subcategory, nonfull, with reflection arrows isomorphisms, example      4.21 13K
Reflective subcategory, reflectors are naturally isomorphic      6.7
Reflector (for a reflective subcategory)      4.23 4H
Reflector as composite of epireflectors      16.24
Reflector vs. concretely reflective subcategory      5.26 5.27 5.31 5.32
Reflector, concrete      5.22 5E
Reflector, existence      4.22
Reflector, naturally isomorphic to others      6.7
Reflector, uniqueness      4.24 6.7
Regular category      14E
Regular co-wellpowered category      7.87
Regular co-wellpowered category vs. category with separator or coseparator      7.89
Regular co-wellpowered category vs. construct      7.88
Regular epimorphism      7.71 ff
Regular epimorphism is extremal epimorphism      7.75
Regular epimorphism vs. (E, M)-category      15.7 15.8
Regular epimorphism vs. (E, Mono)-structured category      14.14
Regular epimorphism vs. (extremal) epimorphism      7O 21.13
Regular epimorphism vs. final morphism      8.11(4) 8O 20.51
Regular epimorphism vs. forgetful functor      7.72(5) 7.73
Regular epimorphism vs. monadic functor      20.51 20.52
Regular epimorphism vs. quotient morphism      8.12
Regular epimorphism vs. retraction      7.75
Regular epimorphism, closed under composition, vs. (RegEpi, Mono-Source)-category      15.25
Regular epimorphism, composition of      14.22
Regular epimorphism, preservation and reflection, vs. regularly algebraic category      23.39
Regular epireflective subcategory      16.1
Regular epireflective subconstruct, vs. (regular) equational subconstruct      16.18
Regular equation      16.16
Regular equational subconstruct, vs. regular epireflective subconstruct      16.18
Regular factorization      15.12 20.32
Regular factorization vs. (RegEpi, Mono-Source)-category      15.13
Regular factorization vs. algebraic functor      24.2
Regular factorization vs. regularly algebraic category      23.38 23.39
Regular factorization vs. regularly monadic category      20.30
Regular monomorphism      7.56 ff
Regular monomorphism in functionally Hausdorff spaces      7J
Regular monomorphism in semigroups      14I
Regular monomorphism is (extremal) monomorphism      7.59 7.63
Regular monomorphism is pullback stable      11.18
Regular monomorphism preserved by products      10.35
Regular monomorphism vs. embedding      8.7 8A
Regular monomorphism vs. equalizer      13.6
Regular monomorphism vs. extremal monomorphism      7.62 7.63 7.65 7J 12B 14.20 14I 21.13
Regular monomorphism vs. monomorphism      7O
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте