Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract and Concrete Categories - The Joy of Cats

Авторы: Adamek J., Herrlich H., Stecker G.E.

Язык: en

Рубрика: Математика/Алгебра/Теория категорий/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 524

Добавлена в каталог: 22.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Co-wellpowered category vs. extensions of factorization structures      15.20 15.21
Co-wellpowered category vs. monadic category      20.29
Co-wellpowered category vs. topological category      21.16 21.17
Co-wellpowered category vs. wellpoweredness      12.13
Co-wellpowered category, concrete      8.19
Co-wellpowered functor      8.37
Co-wellpowered functor vs. adjoint functor      18.11 18.14
Co-wellpowered functor vs. essentially algebraic category      23.14
Co-wellpowered functor, concrete      8.37
Co-wellpowered functor, extremal      8.37
Co-wellpowered functor, implies domain is co-wellpowered      8.38
Coarser than, (preorder) relation on concrete functors      5.18
Cocomplete category      12.2 ff
Cocomplete category vs. cartesian closed category      27.4
Cocomplete category vs. colimit-dense subcategory      12.12
Cocomplete category vs. complete category      12.13 25K
Cocomplete category vs. copower      12H
Cocomplete category vs. essentially algebraic category      23.12 23.13
Cocomplete category vs. solid category      25.15 25.16
Cocomplete category vs. topological category      21.16 21.17
Cocomplete category with a small colimit-dense subcategory is complete      12.12
Cocomplete category, almost implies complete      12.7 ff
Cocomplete subcategory, vs. reflective subcategory      12K
Cocone, = natural sink      11.27
Codomain of a function      2.1
Codomain of a morphism      3.2
Codomain of a sink      10.62
Codomain of a source      10.1
Codomain of a structured source      17.1
Coequalizer      7.68 ff
Coequalizer as a colimit      11.28
Coequalizer vs. completeness      12J
Coequalizer vs. epimorphism      7M
Coequalizer vs. forgetful functor      7.73
Coequalizer vs. isomorphism      7.70
Coequalizer vs. monomorphism      7.70
Coequalizer vs. pushout square      11.33
Coequalizer, absolute      20.14
Coequalizer, existence      12.1 15F
Coequalizer, preservation      13.1
Coequalizer, split      20.14
Coequalizer, uniqueness      7.70
Coessential morphism, w.r.t. a class of morphisms      9.27
Coessential quotient map      9.27
Cointersection      11.28
Cointersection vs. (E, M)-category      15.14 15.15 15.16
Cointersection, existence      12.1
Colimit      11.27 ff
Colimit creation      13.17
Colimit preservation      13.1
Colimit preservation vs. topological functor      21.15
Colimit reflection      13.22
Colimit uniqueness      11.29
Colimit vs. (co-)adjoint functor      18D
Colimit vs. coproduct      11.28
Colimit vs. monadic functor      20.13
Colimit vs. reflection arrow      13.30
Colimit, absolute      20.14
Colimit, concrete      13.12
Colimit, detected by regularly monadic functor      20.33
Colimit, detection, = detection of colimit      13.22
Colimit, directed, = directed colimit      11.28
Colimit, domain of      11.27
Colimit, lifting of      13.17
Colimit, lifting of vs. topological functor      21.15
Colimit-closed subcategory, vs. reflective subcategory      13.29
Colimit-dense full embedding, preserves limits      13L
Colimit-dense subcategory      12.10
Colimit-dense subcategory vs. (co)completeness      12.12
Colimit-dense subcategory, embedding of preserves limits      13.11
Comma category      5.38 3K 21F
Commuting triangle and square      3.4
Compact category      18K
Comparison functor      20.37 ff
Comparison functor vs. adjoint functor      20.42
Comparison functor vs. faithful functor      20.43
Comparison functor vs. full functor      20.43 20.44
Complete category      12.2 ff
Complete category and wellpowered category, is strongly complete      12.5
Complete category characterization      12.3
Complete category vs. adjoint functor      18.12 18.14 18.17 18.19
Complete category vs. cocomplete category      12.13 25K
Complete category vs. coequalizer      12J
Complete category vs. colimit-dense subcategory      12.12
Complete category vs. essentially algebraic category      23.12 23.13
Complete category vs. solid category      25.15
Complete category vs. strongly complete category      12.5 12I
Complete category vs. topological category      21.16 21.17
Complete lattice, vs. has products      10.32
Completion, of abstract categories      12L
Completion, regarded as reflection      4.17
Completion, universal      12M
complex numbers      2.1
Composite of (concrete) functors      3.23 5.14
Composite of (concrete) functors vs. natural transformation      6.3
Composite of epimorphisms, is epimorphism      7.41
Composite of essential embeddings      9.14
Composite of functions      2.1
Composite of isomorphisms, is isomorphism      3.14
Composite of monomorphisms, is monomorphism      7.34
Composite of morphisms      3.1
Composite of natural transformations      6.13
Composite of sources      10.3
Composite of sources vs. (E, M)-category      15.5
Composition of morphisms      3.1 ff
Composition of morphisms in a quasicategory      3.49
Composition of morphisms is associative      3.1
Composition of morphisms vs. (E, M)-category      15.14 15.15
Composition of morphisms vs. (E, M)-structured category      14.6
Composition, as a morphism      27E
Concept, (self-)dual      3.7
Concrete adjoint functor, vs. concrete coadjoint functor      21.24
Concrete category      5.1 ff
Concrete category over 1, vs. concrete functors      5.11
Concrete category over Set, = construct      3.3(2) 5.1
Concrete category vs. Cat      5I
Concrete category, (A, U) has property P means A (or U) has property P      5.3
Concrete category, (uniquely) transportable      5.28 5.35 5.36
Concrete category, amnestic modification      5.6 5.33 5.34
Concrete category, amnestic, = amnestic concrete category      5.4 ff
Concrete category, duality principle for      5.20
Concrete category, fibre-complete      5.7 5.42
Concrete category, fibre-discrete      5.7 5.8 5.39
Concrete category, monadic      20.8 ff
Concrete category, solid, = solid concrete category      25.10 ff
Concrete category, strongly fibre-small      26.5
Concrete category, topological, = topological concrete category      21.7 ff
Concrete category, “concretely isomorphic” is stronger than “isomorphic”      5.12
Concrete co-adjoint functor vs. concrete adjoint functor      21.24
Concrete co-adjoint functor vs. Galois correspondence      21E
Concrete co-wellpoweredness      8.19
Concrete co-wellpoweredness vs. extremal co-wellpoweredness      8E
Concrete colimit      13.12
Concrete coproduct      13.12
Concrete coreflector, i.e., coreflector induced by identity-carried coreflection arrows      5.22
Concrete embedding, essential      21J
Concrete equivalence      5.13
Concrete functor      5.9 ff
Concrete functor between algebraic categories is algebraic      23.22
Concrete functor between constructs      5D
Concrete functor between essentially algebraic categories is essentially algebraic      23.17
Concrete functor between regularly algebraic categories is regularly algebraic      23.40
Concrete functor vs. embedding functor and equivalent objects      5.10
Concrete functor vs. monadic category      20E
Concrete functor, composite      5.14
Concrete functor, existence of a concrete natural transformation between      6.24
Concrete functorspecified by its values on objects      5.10 5.11
Concrete generation of an object      8.15
Concrete generation of an object vs. (extremal) generation      8.16
Concrete generation of an object vs. extremal epimorphism      8.18
Concrete generation of an object vs. universal arrow      8.24
Concrete isomorphism      5.12 5N
Concrete limit      13.12
Concrete limit dense      12M
Concrete limit vs. concrete colimit      13.10
Concrete limit, characterized      13.15
Concrete limit, reflection of      13C
Concrete limit, two step construction      13.16
Concrete natural transformation      6.23
Concrete natural transformation vs. concrete functors      6.24
Concrete product      10.52
Concrete product as a concrete limit      13.12
Concrete product preserved by composition      10.56
Concrete product vs. has M-initial subobjects      21.42
Concrete product vs. initial source      10.53
Concrete product vs. monotopological construct      21.42
Concrete quasitopos, vs. universally topological category      28.18
Concrete reflector vs. concrete functors that are reflectors      5.22
Concrete reflector, = reflector induced by identity-carried reflection arrows      5.22 5E
Concrete subcategory      5.21 ff
Concrete subcategory, concretely (co)reflective, = concretely (co)reflective subcategory      5.22
Concretely cartesian closed category      27.11
Concretely cartesian closed category vs. discrete objects      27.15
Concretely cartesian closed category vs. topological category      27.15
Concretely cartesian closed construct, vs. subconstruct of Set      27.16
Concretely co-wellpowered concrete category      8.19
Concretely co-wellpowered functor      8.37
Concretely co-wellpowered functor vs. (ConGen, Initial Mono-Source) functor      17.11
Concretely complete      12M
Concretely coreflective subcategory      5.22
Concretely coreflective subcategory vs. topological subcategory      21.33
Concretely equivalent, is not symmetric      5.13
Concretely generating structured arrow      see Concrete generation of an object
Concretely reflective concrete subcategory      5.22
Concretely reflective concrete subcategory of amnestic category is full      5.24
Concretely reflective concrete subcategory of non-amnestic concrete category need not be full      5.25 4.21
Concretely reflective concrete subcategory vs. finally dense subcategory      21.32
Concretely reflective concrete subcategory vs. initial source      10.50
Concretely reflective concrete subcategory vs. initially closed subcategory      21.31
Concretely reflective concrete subcategory vs. reflector      5.26 5.27 5.31 5.32
Concretely reflective concrete subcategory vs. topological (sub)category      21.32 21.33
Concretizable category      5J 10L
Concretizable category vs. separating set      7Q
Cone, = natural source      11.3
Conglomerate      2.3
Conglomerate of all classes      2.3
Conglomerate of morphisms between two objects in a quasicategory      3.49
Conglomerate of objects in a quasicategory      3.49
Conglomerate, (il)legitimate      2.3
Conglomerate, codability by      2.3
Conglomerate, small      2.3
Congruence fork      20.14
Congruence relation      11.20
Congruence relation vs. equalizer      11.20
Congruence relation vs. monomorphism      11.20 11R
Congruence relation vs. pulation square      11.33
Congruence relation, coequalizer of, vs. monadic construct      20.35
Constant functions are morphisms, vs. has function spaces      27.18
Constant functor      3.20(2)
Constant morphism      7A 10W
Construct      3.3(2) 5.1
Construct must be regular wellpowered and regular co-wellpowered      7.88
Construct not determinated by object class      3.3(2)
Construct, bounded      24.11
Construct, concretely co-wellpowered      8D
Construct, monadic, = monadic construct      20.34 ff
Contraction      3.3(3)
Contravariant exponential functor      27.5
Contravariant exponential functor vs. (co-)adjoint functor      27.7
Contravariant hom-functor      3.20(5)
Contravariant power-set functor      3.20(9)
Copower, of an object      10.63
Copower, of an object vs. cocompleteness      12H
Copower, of an object vs. free object      10R
Copower, of an object, non-existence      10S
Coproduct      10.63 ff
Coproduct of functors      10U
Coproduct vs. colimit      11.28
Coproduct, concrete      13.12
Coproduct, existence      10I 12.1 12G
Coproduct, preservation of      13.1
Coreflection arrow      4.25 ff
Coreflection, Galois      6.26
Coreflective hull, vs. cartesian-closed category      27C
Coreflective modification, of a concrete category      5.22 5K
Coreflective subcategory      4.27 16.1
Coreflective subcategory vs. bicoreflective subcategory      16.4
Coreflective subcategory vs. cartesian closed subcategory      27.9
Coreflector for a coreflective subcategory      4.27
Coreflector, concrete      5.22
Coseparating set      18L
Coseparator      7.16
Coseparator is extremal in balanced category      10.18
Coseparator vs. faithful hom-functor      7.17
Coseparator vs. power of an object      10.38
Coseparator vs. topological category      21.16 21.17
Coseparator, category with, is regular wellpowered and regular co-wellpowered      7.89
Coseparator, extremal      10.17
Costructured arrow      8.40
Costructured sink      17.4
Covariant exponential functor      27.5
Covariant Hom-functor      3.20(4)
Covariant power-set functor      3.20(8)
Cover, projective      9.27
Creation of (Extremal Epi, Mono-Source)- factorizations      23.31
Creation of absolute coequalizers, vs. monadic functor      20.17
Creation of absolute colimits      20.14
Creation of absolute colimits, monadic functor does      20.16
Creation of colimits      13.17
Creation of finite limits, vs. monadic construct      20.35
Creation of isomorphisms      13.35 13M
Creation of isomorphisms vs. creation of limits      13.36
Creation of isomorphisms vs. essentially algebraic functor      23.8
Creation of isomorphisms vs. monadic functor      20.12
Creation of isomorphisms vs. reflection of identities & isomorphisms      13.36
Creation of limits      13.17 13N
Creation of limits vs. creation of isomorphisms      13.36
Creation of limits vs. essentially algebraic functor      23.15
Creation of limits vs. lifts limits uniquely and reflects limits      13.20 13.25
Creation of limits vs. reflection of isomorphisms      13.25
Creation of limits, monadic functor does      20.12
Creation of split coequalizers, vs. monadic functor      20.17
Decomposition of functors      3N
Decomposition of functors vs. factorization structure      26A
Decomposition of Galois correspondence      6.35
Decomposition theorems for solid functors      26.3 26.4
Dense subcategory      12D
Detection and preservation of limits vs. solid functor      25.18 25.19
Detection and preservation of limits vs. topologically algebraic functor      25.18 25.19
Detection of colimits      13.22
Detection of colimits vs. reflective subcategory      13.32
Detection of colimits vs. solid functor      25.14
Detection of limits      13.22
Detection of limits vs. lifting of limits      13.34
Detection of limits vs. solid functor      25.14
Detection of wellpoweredness, vs. monadic functor      20.12
Diagonal      14.1 14B 15.1 15K 17.3 17D
Diagonal morphism      10V 10W
Diagonalization property, (E, M), = (E, M)-diagonalization property      15.1
Diagonalization property, causes E and M to determine each other      15.5
Diagonalization property, w.r.t. a functor      17.3
Diagram, = functor      11.1 ff
Diagram, limit of      11.3
Directed colimit      11.28 11O
Directed colimit vs. finitary quasivariety      24A
Discrete category      3.26
Discrete functor, vs. topological functor      21.12
Discrete object      8.1 8M
Discrete object must be smallest element in the fibre      8.4
Discrete object vs. concretely cartesian closed subcategory      27.15
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте