Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract and Concrete Categories - The Joy of Cats

Авторы: Adamek J., Herrlich H., Stecker G.E.

Язык: en

Рубрика: Математика/Алгебра/Теория категорий/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 524

Добавлена в каталог: 22.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Discrete object vs. topological category      21.11
Discrete quasicategory      3.51
Discrete space functor, is a full embedding      3.29
Discrete terminal object, vs. has function spaces      27.18
Disjoint union, of a family of sets      2.1
Dispersed factorization structure      15L
Distributive law for cartesian closed category      27.8
Domain of a diagram, = scheme      11.1
Domain of a function      2.1
Domain of a morphism      3.2
Domain of a sink      10.62
Domain of a source      10.1
Domain of a structured source      17.1
Dominion      14J
Down-directed poset      11.4
Dual category, = opposite category      3.5
Dual concept, of a “categorical concept”      3.7
Dual functor, = opposite functor      3.41
Dual of a categorical statement involving functors      3.40 3.42
Dual property      3.7
Dual statement, of a “categorical statement”      3.7
Duality principle for categories      3.7 3E
Duality principle for concrete categories      5.20
Duality principle for topological category      21.10
Duality theories, vs. representability      10N
Dually equivalent categories      3.37 3.38
E-equation      16.16
E-equational subcategory      16.16
E-equational subcategory vs. closed under the formation of Msources and E-quotients      16.17
E-equational subcategory vs. closed under the formation of products      16.17
E-implicational subcategory      16.12
E-implicational subcategory vs. E-reflective subcategory      16.14
E-monad      20.21 ff
E-monadic functor      20.21 ff
E-monadic functor lifts (E, M)-factorizations uniquely      20.24
E-monadic functor vs. reflective subcategory      20.25
E-reflective hull, = smallest E-reflective subcategory      16.21
E-reflective hull, characterization of members      16.22
E-reflective subcategory      16.1
E-reflective subcategory vs. closure under the formation of M-sources      16.8
E-reflective subcategory vs. E-implicational subcategory      16.14
E-reflective subcategory vs. E-monadic functor      20.25
E-reflective subcategory, intersection of      16.20
Eilenberg — Moore category      20.4
Elementhood-morphism      28.11
Embeddable, fully      4.6
Embedding functor      3.27
Embedding functor closed under composition and first factor      3.30
Embedding functor is (up to isomorphism) inclusion of subcategory      4.5
Embedding functor vs. faithful functor      3.28 4.5
Embedding functor vs. full functor      3.29
Embedding functor vs. preservation of limit      13.11
Embedding functor, finally dense      10.72
Embedding morphism      8.6 ff
Embedding morphism in Cat      8C
Embedding morphism vs. monomorphism      8.7
Embedding morphism vs. regular monomorphism      8.7 8A
Embedding morphism vs. section      8.7
Embedding morphism, composition      8.9
Embedding morphism, essential      9.12
Embedding morphism, first factor of      8.9
Embedding, Yoneda      6.19 6J
Empty category      3.3(4)
Empty source      10.2
Empty source vs. product      10.20
Enough injectives      9.9
Enough injectives vs. absolute retract      9.10
Enough injectives vs. injective hull      9D
Epi-sink      10.63
Epi-sink vs. pullback      11I
Epi-transformation      6.5 7R
Epi-transformation vs. adjoint situation      19.14
Epimorphism      7.38 ff
Epimorphism as extremal monomorphism is isomorphism      7.66
Epimorphism as section is isomorphism      7.43
Epimorphism for groups      7H
Epimorphism vs. (E, M)-category      15.8 15.14 15.15
Epimorphism vs. (E, M)-structured category      14.10
Epimorphism vs. coequalizer      7M
Epimorphism vs. equalizer      7.54
Epimorphism vs. generating structured arrows      8.16 8.18 8.36
Epimorphism vs. hom-functor      19C
Epimorphism vs. quotient morphism      8.12
Epimorphism vs. regular epimorphism      7O
Epimorphism vs. retraction      7.42
Epimorphism, closed under composition      7.41
Epimorphism, equals implication      16.12
Epimorphism, extremal, = extremal epimorphism      7.74
Epimorphism, preserved and reflected by equivalence functor      7.47
Epimorphism, products of      10D
Epimorphism, reflected by faithful functor      7.44
Epimorphism, regular, = regular epimorphism      7.71
Epimorphism, split, = retraction      7.24
Epimorphism, stable      11J
Epimorphism, swell      7.76 15A
Epimorphism, types      7.76
Epireflective hulls, vs. co-wellpoweredness      16C
Epireflective subcategory      16.1 ff
Epireflective subcategory vs. closure under the formation of products and extremal subobjects      16.9 16.10
Epireflective subcategory vs. extremal mono-source      16H
Epireflective subcategory vs. strongly limit-closed subcategory      16L
Epireflective subcategory with bad behavior      16A
Epireflective subcategory, regular      16I
Equalizer      7.51 ff
Equalizer and product vs. (Epi, ExtrMono)-structured category      14.19
Equalizer and product vs. congruence relation      11.20
Equalizer and product vs. epimorphism and isomorphism      7.54
Equalizer and product vs. product and pullback square      10.36 11.14 11S
Equalizer and product vs. regular monomorphism      13.6
Equalizer and product, reflection of      17.13
Equalizer and product, uniqueness      7.53
Equalizer and product, vs. pullback square      11.11 11.14
Equalizer, existence      12.1
Equalizer, preservation of      13.1 13.3
Equation, = regular implication with free domain      16.16
Equational subcategory      16.16
Equational subcategoryof $\mathbf{Alg}(\Omega)$, char      16.19
Equational subconstruct, vs. epireflective subconstruct      16.18
Equivalence functor is topologically algebraic      25.2
Equivalence functor vs. adjoint situation      19.8 19H
Equivalence functor vs. natural isomorphism      6.8
Equivalence functor, = full, faithful, and isomorphism-dense functor      3.33 3H
Equivalence functor, concrete      5.13
Equivalence functor, preserves and reflects special morphisms      7.47
Equivalence functor, properties of      3.36
Equivalence of quasicategories      3.51
Equivalence of “standard” and “object-free” versions of category theory      3.55
Equivalence relation on a conglomerate      2.3
Equivalence, natural, = natural isomorphism      6.5
Equivalent categories      3.33
Equivalent categories vs. isomorphic categories      3.35
Equivalent categories, dually      3.37 3.38
Equivalent objects, in a concrete category      5.4
Essential embedding      9.12
Essential embedding, properties of      9.14
Essential extension      9.11 9H
Essential extension vs. injective object      9.15
Essential extension, types of      9.20
Essential morphism, w.r.t. a class of morphisms      9.22
Essential uniqueness, of universal arrow      8.25 8.35
Essentially algebraic category      23.5 ff
Essentially algebraic category has coequalizers      23.10
Essentially algebraic category vs. co-wellpoweredness      23.14
Essentially algebraic category vs. completeness & cocompleteness      23.12 23.13
Essentially algebraic category vs. monadic category      23.16
Essentially algebraic category vs. wellpoweredness      23.12 23.13
Essentially algebraic category, characterization      23.8
Essentially algebraic category, concrete functor between      23.17
Essentially algebraic category, implies embeddings = monomorphisms      23.7
Essentially algebraic embedding      23B
Essentially algebraic functor      23.1 ff
Essentially algebraic functor detects colimits      23.11
Essentially algebraic functor is faithful adjoint functor      23.3
Essentially algebraic functor is topologically algebraic      25.2
Essentially algebraic functor preserves and creates limits      23.11
Essentially algebraic functor vs. creates limits      23.15
Essentially algebraic functor vs. monadic functor      23C
Essentially algebraic functor vs. solid functor      26.3
Essentially algebraic functor, closed under composition      23.4
Essentially algebraic functor, equivalent conditions      23.2
Evaluation morphism      27.2
Exact category      14F
Exponential functors      27.5
Exponential law for cartesian closed category      27.8
Exponential morphism      27.2
Extension of a factorization structure      15.19 ff
Extension of a factorization structure vs. has products      15.19 15.21
Extension of a factorization structure, equivalent conditions for      15.20
Extension of an object      8.6
Extension, injective      9.11
Extensional topological construct & hull      28B 28C
Extremal co-wellpoweredness      7.87 ff 23I
Extremal co-wellpoweredness detected by regularly monadic functor      20.31
Extremal co-wellpoweredness vs. concrete co-wellpoweredness      8E
Extremal co-wellpoweredness vs. monadic category      20.48
Extremal coseparator      10.17
Extremal coseparator, characterization      10B 10C
Extremal epi-sink      10.63
Extremal epimorphism      7.74 ff
Extremal epimorphism vs. (E, M)-category      15.8
Extremal epimorphism vs. (E, M)-structured category      14.12 14.13 14.14
Extremal epimorphism vs. concrete generation      8.18
Extremal epimorphism vs. extremally generating structured arrows      8.16 8.18 8.36
Extremal epimorphism vs. final morphism      8.11(5)
Extremal epimorphism vs. pullbacks and products      23.28 23.29
Extremal epimorphism vs. quotient morphism in algebraic category      23.26 23G
Extremal epimorphism vs. regular epimorphism      7.75 21.13
Extremal epimorphism vs. topological category      21.13
Extremal epimorphism, preservation & reflection of vs. regularly algebraic category      23.38
Extremal epimorphism, preservation & reflection of vs. regularly monadic category      20.30
Extremal epimorphism, reflection of      17.13
Extremal epimorphismis final morphism in algebraic category      23.23
Extremal generation of an object      8.15
Extremal generation of an object vs. concrete generation      8.16
Extremal generation of an object vs. extremal epimorphism      8.16 8.18
Extremal mono-source      10.11 ff
Extremal mono-source not preserved by composition      10.14 7N
Extremal mono-source preserved by first factor      10.13
Extremal mono-source vs. (E, M)-category      15.8
Extremal mono-source vs. epireflective subcategory      16H
Extremal mono-source vs. extremal monomorphism      10.26
Extremal mono-source vs. product      10.21
Extremal mono-source vs. pullback square      11.9
Extremal mono-source vs. subsource      10.15
Extremal mono-source, characterization      10A
Extremal monomorphism      7.61 ff
Extremal monomorphism as epimorphism is isomorphism      7.66
Extremal monomorphism preserved by solid functors      25.21
Extremal monomorphism vs. (E, M)-diagonalization property      14.18
Extremal monomorphism vs. (E, M)-structured category      14.10
Extremal monomorphism vs. adjoint functor      18J
Extremal monomorphism vs. balanced category      7.67
Extremal monomorphism vs. extremal mono-source      10.26
Extremal monomorphism vs. monadic functor      20O
Extremal monomorphism vs. regular monomorphism      7.62 7.63 12B 14.20 14I 21.13
Extremal monomorphism vs. topological category      21.13
Extremal monomorphism, closure under composition and intersections      14.18
Extremal monomorphism, composite need not be extremal      7N
Extremal monomorphism, products of      10D
Extremal partial morphism      28.1
Extremal quotient object      7.84
Extremal reducibility of final sinks      28.19
Extremal separator      10.63
Extremal separator characterization      10B 10C
Extremal subobject      7.77
Extremal-subobject classifier      28.11
Extremally co-wellpowered category      7.87
Extremally co-wellpowered category vs. (E, M)-category      15.25 15.26
Extremally co-wellpowered category vs. algebraic category      23.27
Extremally co-wellpowered functor      8.37
Extremally epireflective subcategory      16.1 ff
Extremally epireflective subcategory vs. algebraic subcategory      23.33
Extremally epireflective subcategory, characterization      16M
Extremally generating structured arrow      8.15
Extremally generating structured arrow with respect to a functor      8.30
Extremally monadic construct, is topologically algebraic      25.2
Extremally monadic functor      20M 23N
Extremally projective object      23H
Extremally reducible conglomerate of sinks      28.13
Extremally wellpowered category      7.82 ff
Extremally wellpowered category vs. wellpowered category      7.83
Factorization lemma      14.16
Factorization structure      15.1 ff
Factorization structure for 2-sources      15I
Factorization structure for empty sources      15.2 15G
Factorization structure for morphisms      14.1 ff 14A
Factorization structure for morphisms, extension of, to a factorization structure for sources      15.24
Factorization structure for sinks      15.2
Factorization structure for small sources      15J
Factorization structure vs. decomposition of functors      26A
Factorization structure vs. monadic category      20.28
Factorization structure, dispersed      15J
Factorization structure, extensions of      15.19 ff
Factorization structure, inheritance      16B
Factorization structure, w.r.t. a functor      17.3
Factorization structure, w.r.t. a functor, existence      17C
Factorization structure, w.r.t. a functor, two methods      17.5
Faithful functor      3.27 ff 7G
Faithful functor means epimorphisms are generating      8.32
Faithful functor reflects epimorphisms      7.44
Faithful functor reflects mono-sources      10.7
Faithful functor reflects monomorphisms      7.37
Faithful functor vs. (E, M)-factorization      17.15 17.16
Faithful functor vs. adjoint situation      19.14
Faithful functor vs. comparison functor      20.43
Faithful functor vs. concrete functor      5.10
Faithful functor vs. embedding functor      3.28 3.29 4.5
Faithful functor vs. essentially algebraic functor      23.2
Faithful functor vs. inclusions of subcategories      4.5
Faithful functor vs. initial source      10.59
Faithful functor vs. reflection of (extremal) epimorphisms      19.14
Faithful functor vs. reflection of equalizers      13.24 17.13 17.14
Faithful functor vs. reflection of products      10.60
Faithful functor vs. reflection of special morphisms      17G
Faithful functor vs. solid functor      25.12
Faithful functor vs. thin category      3.29 3G
Faithful functor vs. topologically algebraic functor      25.3
Faithful functor, characterization      8N
Faithful functor, closed under composition      3.30
Faithful functor, is isomorphism iff full and bijective on objects      3.28
Faithful functor, monadic functor is      20.12
Faithful functor, topological functor is      21.3
Fibre of a base object      5.4 5A
Fibre of a base object, largest element need not be discrete      8.5
Fibre of a base object, order on      5.4
Fibre-complete concrete category      5.7
Fibre-complete concrete category, functor-structured categories are      5.42
Fibre-discrete concrete category, categories of T-algebras are      5.39
Fibre-discrete concrete category, concrete category is, iff forgetful functor reflects identities      5.8
Fibre-discrete concrete category, means fibres are ordered by equality      5.7
Fibre-small concrete category      5.4 5.6
Fibre-small concrete category, monadic category is      20.12
Fibre-small topological category      21.34 ff 21B
Final lift, vs. topological category      21.34
Final morphism      8.10 ff
Final morphism is extremal epimorphism in algebraic category      23.23
Final morphism vs. extremal epimorphism      8.11(5)
Final morphism vs. isomorphism      8.14
Final morphism vs. monadic category      20.28
Final morphism vs. regular epimorphism      8.11(4) 8O 20.51
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте