Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats
Adamek J., Herrlich H., Stecker G.E. — Abstract and Concrete Categories - The Joy of Cats



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract and Concrete Categories - The Joy of Cats

Авторы: Adamek J., Herrlich H., Stecker G.E.

Язык: en

Рубрика: Математика/Алгебра/Теория категорий/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 524

Добавлена в каталог: 22.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Final morphism, composition of      8.13
Final morphism, first factor of      8.13
Final morphism, products of      28J
Final quotient object      8.10
Final sink      10.63 ff
Final sink, reducibility of, vs. representable partial morphisms      28.15
Finally closed subcategory      21.29
Finally closed subcategoryvs. concretely coreflective subcategory      22.8
Finally dense embedding      10.72
Finally dense subcategory      10.69
Finally dense subcategory vs. concretely reflective subcategory      21.32
Finally dense subcategory vs. preserves initial sources      10.71
Finally dense subcategory vs. topological category      21.32
Finer than, (preorder) relation on concrete functors      5.18
Finitary category      24.4
Finitary category, = finitary variety, if monadic      24.7
Finitary functor      24.4
Finitary monad      24.4
Finitary quasivariety      16.12
Finitary quasivariety vs. directed colimit      24A
Finitary quasivariety vs. finitary variety      16K 16N 24.9
Finitary quasivariety, = finitary and algebraic category      24.9
Finitary quasivariety, = regular epireflective subconstruct of some finitary monadic construct      24.9
Finitary quasivariety, axiomatic descriptions      23.30 23.31 23.38 24.9 24.10
Finitary quasivariety, characterization theorem      24.9
Finitary variety      16.16
Finitary variety is monadic      20.20
Finitary variety vs. finitary quasivariety      16K 16N 24.9
Finitary variety vs. monadic category      24.7
Finitary variety, axiomatic descriptions      20.35 23.40 24.7 24.8
Finitary variety, characterization theorem for      24.7
Finite product      10.29
Finite product vs. product and projective limit      11B
Finitely (co)complete category      12.2
Finitely (co)complete category, characterization      12.4
Finitely complete category, vs. has finite products and representable M-partial morphisms      28.5 28.6
Forgetful functor      3.20(3) 5.1
Forgetful functor vs. coequalizer      7.73
Forgetful functor vs. regular epimorphism      7.73
Forgetful functor vs. topological construct      21L
Fork, congruence      20.14
Fork, split      20.14
Frame      5L 8G
Free automata      8P
Free category      3A
Free functor      19.4
Free monad      20.55
Free monad vs. varietor      20.56 20.57 20.58
Free object      8.22 8F—8L
Free object vs. adjoint functor      18.19
Free object vs. adjoint situation      19.4
Free object vs. copower      10R
Free object vs. initial object      8.23
Free object vs. monomorphism      8.28 8.29
Free object vs. projective object      9.29 9.30
Free object vs. representable forgetful functor      8.23
Free object vs. wellpoweredness      18.10
Free object, existence      18.15
Free object, retract of      9.29
Free objectvs. preservation and reflection of mono-sources      18.10
Full embeddability of familiar constructs      4.7 4K
Full embedding functor      4.6
Full embedding functor vs. comparison functor      20.44
Full embedding functor vs. inclusion of a full subcategory      4.5 4.6
Full faithful functor reflects isomorphisms      3.32
Full faithful functor vs. adjoint situation      19.14
Full faithful functor, is isomorphism iff bijective on objects      3.28
Full faithful functor, properties of      3.31
Full functor      3.27 ff
Full functor closed under composition      3.30
Full functor vs. comparison functor      20.43
Full functor, second factor of is not always full      3.30
Full reflective embedding is topologically algebraic      25.2
Full reflective embedding vs. solid functor      26.1
Full reflective subcategory, characterization      4.20
Full subcategory      4.1 ff 4C
Full subcategory vs. concretely reflective subcategory of amnestic category      5.24
Full subcategory, isomorphism-closed      4.9 4B
Full subcategory, isomorphism-dense      4.9
Function between classes      2.2
Function between conglomerates      2.3
Function between sets      2.1
functor      3.17 ff
Functor quasicategory      6.15 6H
Functor quasicategory, full embedding of any category into      6.20
Functor vs. reflection of identities      3D
Functor, (E, M), = (E, M)-functor      17.3 ff
Functor, (E, —), = (E, —)-functor      17.4
Functor, adjoint, = adjoint functor      18.1 ff
Functor, algebraic, = algebraic functor      23.19 ff
Functor, as family of functions between morphism classes      3.19
Functor, between quasicategories      3.51
Functor, co-adjoint, = co-adjoint functor      18.1 ff
Functor, co-wellpowered, implies domain co-well- powered      8.37 8.38
Functor, comparison, = comparison functor      20.37 ff
Functor, composite of      3.23
Functor, concretely co-wellpowered      8.37
Functor, constant functor      3.20(2)
Functor, contravariant hom-functor      3.20(5)
Functor, contravariant power-set functor      3.20(9)
Functor, coproduct of      10U
Functor, coreflector for a coreflective subcategory      4.27
Functor, covariant hom-functor      3.20(4)
Functor, covariant power-set functor      3.20(8)
Functor, decomposition of      3N
Functor, discrete space      3.29
Functor, dual, = opposite functor      3.41
Functor, duality functor for vector spaces      3.20(12)
Functor, E-monadic, = E-monadic functor      20.21 ff
Functor, embedding, = embedding functor      3.27
Functor, equivalence, = equivalence functor      3.33
Functor, essentially algebraic, = essentially algebraic functor      23.1 ff
Functor, exponential      27.5
Functor, extremally co-wellpowered      8.37
Functor, faithful, = faithful functor      3.27
Functor, finitary      24.4
Functor, forgetful functor, = underlying or forgetful functor      3.20(3) 5.1
Functor, free      19.4
Functor, full, = full functor      3.27
Functor, fundamental group      3.22
Functor, identity      3.20(1)
Functor, inclusion      4.4
Functor, indiscrete space      3.29 21.12
Functor, inverse      3.25
Functor, is embedding iff faithful and injective on objects      3.28
Functor, is isomorphism iff full, faithful, and bijective on objects      3.28
Functor, isomorphism      3.24
Functor, isomorphism-dense      3.33
Functor, M-topological      21K
Functor, monadic, = monadic functor      20.8 ff
Functor, n-th power functor      3.20(10)
Functor, naturally isomorphic to idA      6D
Functor, need not reflect isomorphisms      3.22
Functor, notation      3.18
Functor, object-free      3.55
Functor, object-part determined by the morphism-parts      3.19
Functor, opposite, = opposite functor      3.41
Functor, preserves isomorphisms      3.21
Functor, regularly algebraic, = regularly algebraic functor      23.35 ff
Functor, regularly monadic, = regularly monadic functor      20.21 ff
Functor, representable, = representable functor      6.9
Functor, solid, = solid functor      25.10 ff
Functor, Stone-functor      3.20(11)
Functor, topological, = topological functor      21.1 ff
Functor, topologically algebraic, = topologically algebraic functor      25.1 ff
Functor, underlying, = forgetful functor      3.20(3) 5.1
Functor-costructured category      5.43
Functor-structured category      5.40 6C 28K
Functor-structured category, cartesian closed      27I
Functor-structured category, characterization      22A
Functor-structured category, reflective subcategory of vs. solid strongly fibre-small category      26.7
Functors, relationships among      25.22
Galois adjoint, = residual functor      6.25
Galois adjunction      19D
Galois co-adjoint, = residuated functor      6.25
Galois connection      6.26 6G
Galois connection, composition of      6.27(1)
Galois connection, dual of      6.27(2)
Galois coreflection      6.26 6.35
Galois correspondence      6.25 19E
Galois correspondence between amnestic concrete categories      6.29—6.36
Galois correspondence for constructs      6.26
Galois correspondence theorem      21.24
Galois correspondence vs. adjoint situation      19.8
Galois correspondence vs. concrete co-adjoint      21E
Galois correspondence vs. initial source preservation      10.49 21.24
Galois correspondence, decomposition of      6.35
Galois correspondence, equivalently described      6.28
Galois isomorphism      6.26 6.35
Galois reflection      6.26
Galois reflection vs. decomposition of Galois correspondence      6.35
Galois reflection, characterization      6.34
Generating structured arrow      8.15 ff
Generating structured arrow, characterization      17A
Generating structured arrow, concretely      8.15
Generating structured arrow, extremally      8.15
Generating structured arrow, strongly generating structured arrow is      25.5
Generating structured arrow, w.r.t. a functor      8.30
Generation vs. concrete generation      8.16
Generation vs. epimorphism      8.16 8.18
Graph of a category      3A
Has (E, M)-factorizations vs. (E, M)-functor      17.10
Has (E, M)-factorizations vs. adjoint functor      18.3
Has (E, M)-factorizations, w.r.t. a functor      17.3
Has (finite) (co)intersections      12.1
Has (finite) (co)products      10.29 12.1
Has a separator, vs. cartesian closed category      27.4
Has coequalizers      12.1
Has coequalizers vs. regularly algebraic category      23.38
Has concrete (co)limits      13.12
Has concrete products      10.54
Has enough injectives      9.9 9.22
Has equalizers      12.1
Has equalizers and (finite) products, means (finitely) complete      12.3 12.4
Has finite intersections and finite products, means finitely complete      12.4
Has finite intersections and products, means complete      12.3
Has finite products, and representable M-partial morphisms vs. finitely complete      28.5 28.6
Has free objects      8.26
Has function spaces      27.17
Has function spaces vs. constant functions are morphisms      27.18
Has function spaces vs. discrete terminal objects      27.18
Has function spaces vs. topological category      27.22
Has limits, vs. (E, M)-structured      14.17
Has M-initial subobjects, vs. concrete products      21.42
Has products      10.29
Has products and equalizers (resp. intersections), means complete      12.3
Has products of all sizes, implies thin category      10.32
Has products vs. extension of factorization structure      15.19 15.21
Has pullbacks      12.1
Has pullbacks and a terminal object, means finitely complete      12.4
Has pushouts      12.1
Has regular factorizations      15.12
Has regular factorizations vs. regularly monadic functor      20.32
Has representable, consequences of      28.3
Has representable, M-partial morphisms      28.1
Has small concrete colimits, characterized      13.14
Hewitt, E.      see Duality principle
Hom-functor      3.20(4) 3.20(5)
Hom-functor preserves limits      13.7
Hom-functor vs. (co)separator      7.12 7.17
Hom-functor vs. epimorphism      19C
Hom-functor vs. limit      13H
Hom-functor vs. product      10E 10F
Hom-functor vs. quasicategory      3.51
Hom-functor vs. set-valued functor      6.18
Hull, algebraic      23K
Hull, E-reflective, = E-reflective hull      16.21
Hull, injective      9.16
Idempotent monad      20F
Identity functor      3.20(1) 5.14
Identity morphism      3.1 ff
Identity morphism in a category, as unit in the corresponding object-free category      3.54
Identity morphism vs. isomorphism      3.13
Identity morphism vs. object      3.19
Identity morphism vs. subcategory      4A
Identity morphism, reflection      3D
Identity natural transformation      6.6
Identity-carried A-morphism      5.3
Identity-carried reflection arrow      see Concretely reflective concrete subcategory
Illegitimate conglomerate      2.3
Illegitimate quasicategory      6.16
Image of the indexing function      2.1
Image, inverse      11.19
Implication, = epimorphism      16.12
Implication, satisfaction of      16.12
Implicational subcategory      16.12
Inclusion functor      4.4
Indiscrete object      8.3
Indiscrete object must be largest element in the fibre      8.4
Indiscrete object preservation      21.23
Indiscrete object vs. initial source      10.42
Indiscrete object vs. initial subobjects      21.35
Indiscrete object vs. topological category      21.11 21.35
Indiscrete space functor is a full embedding      3.29
Indiscrete space functor vs. topological functor      21.12
Indiscrete structure vs. adjoint situation      21A
Indiscrete structure vs. topological functor      21.18 21.19 21.20
Inductive limit      11.28
Initial completion      21G
Initial lift, vs. topological category      21.34
Initial morphism      8.6
Initial morphism vs. injective morphism      8B
Initial morphism vs. isomorphism      8.14
Initial morphism, composition of      8.9
Initial morphism, first factor of      8.9
Initial morphism, universally      10P
Initial object      7.1
Initial object vs. free object      8.23
Initial object vs. limit      11A
Initial object, uniqueness      7.3
Initial source      10.41
Initial source preservation      10.47
Initial source preservation vs. Galois correspondence      21.24
Initial source preserved by composition      10.45
Initial source preserved by first factor      10.45
Initial source vs. concrete product      10.53
Initial source vs. concretely reflective subcategory      10.50
Initial source vs. faithful functor      10.59
Initial source vs. finally dense subcategory      10.69
Initial source vs. indiscrete object      10.42
Initial source vs. initial subsource, in a fibre-small topological category      21.36
Initial source vs. mono-source      17.13
Initial source vs. subsource      10.46
Initial source w.r.t. a functor      10.57
Initial source, composition of      10O
Initial source, domain of      10.43
Initial subobject      8.6
Initial subobject vs. indiscrete object      21.35
Initial subobject vs. monotopological construct      21.42
Initial subobject vs. topological category      21.35
Initial T-algebra      20I
Initiality-preserving concrete functor, preserves indiscrete objects      21.23
Initially closed subcategory      21.29
Initially closed subcategory of a topological category is topological      21.30
Initially closed subcategory vs. concretely reflective subcategory      21.31 22.3 22.4
Initially dense subcategory      10.69
Injection morphism      10.63
Injective automata      9I
Injective extension      9.11
Injective extension, types of      9.20
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте