Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 109

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 582

Äîáàâëåíà â êàòàëîã: 22.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lemberg, H.      133(160) 199
Lengyel — Epstein model, three-dimensional pattern selection      476
Lengyel — Epstein model, Turing patterns      456—458
Lengyel — Epstein model, Turing — Hopf interaction, two-dimensional spatiotemporal dynamics      493—495
Lengyel — Epstein model, two-dimensional spatial patterns, subcritical localized structures      465—467
Lengyel, I.      441(50) 442(50 54—56) 444(55 57—58) 447(95) 449(56 58 95 122—123) 456(50 54 122—123) 458(58) 480(58) 504—506
Lennard — Jones (LJ) systems, anisotropic attractive interactions, Gay — Berne liquid crystal model      64—65
Lennard — Jones (LJ) systems, dynamic structure factor calculations      420
Lennard — Jones (LJ) systems, ionic conductivity limits, dielectric friction calculation      372—374
Lennard — Jones (LJ) systems, ionic conductivity limits, electrolyte solutions      367—371
Lennard — Jones (LJ) systems, liquid crystal molecular models, interaction potentials      86
Lennard — Jones (LJ) systems, liquid crystal molecular models, reorientational motion      94—97
Lennard — Jones (LJ) systems, molecular flexibility, Gay — Berne liquid crystal model      83—85
Lennard — Jones (LJ) systems, Stockmayer liquid, ion solvation dynamics in      260—263
Lennard — Jones (LJ) systems, supercritical water analysis, microscopic behavior      131—141
Lennard — Jones (LJ) systems, ultrafast polar solvation, continuum model of      328
Lennard — Jones (LJ) systems, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids      334—343
Lennard — Jones (LJ) systems, vibrational energy relaxation (VER)      344—345
Lennard — Jones (LJ) systems, vibrational energy relaxation (VER), biphasic frictional response      351—353
Lessing, H.      217(48) 246(48) 277(48) 424
Lev, O.      502(377) 513
Levelt Sengers, J.M.H.      116(20 22) 162(236—237 239—240) 163(237 253) 164(237) 165(240) 173(10) 187(240) 190(236) 194—195 201—202
Levesque, D.      92(152) 112
Levine, H.      500(344) 502(379) 512—513
Levinsen, M.T.      454(143) 500(143) 507
Levy, H.A.      120(102) 158(102) 197
Lewis, J.P.      156(207) 157(207 210) 200—201
Li, G.      445(66) 450(131 138) 464(66) 471(66) 495(131) 498(131 138) 199(138) 504 506—507
Li, R.      445(66) 464(66) 471(66) 504
Li, Y.-X.      469(194) 508
Librational moment correlation function, solvation dynamics in water, rotational dissipative kernel calculations      267—268
Lichtenthaler, R.N.      116(25) 195
Lidin, S.      477(242) 479(242) 509
Lie, G.C.      118(58) 133(154) 160(58) 196 199
Lifshitz, E.M.      2(4) 4(9) 13(9) 35(9) 36 501(369) 513
Lima, D.      449(119) 457(119) 484(119) 486—488(119) 489(119 291) 490(119 291) 493—495(119) 506 511
Lin, C.-L.      165(263) 202
Lin, J.S.      102(186) 113
Lin, S.      275(241) 430
Linear combination of atomic orbitals (LCAO) formula, ab initio simulations of supercritical water      157—160
Linear evolution, pattern selection theory, weakly nonlinear analysis      451—453
Linear systems theory, frequency-dependent magnetic resonance      16—19
Linear systems theory, slow, viscous liquid solvation dynamics      307—313
Linear systems theory, solvation dynamics in water      276
Liotta, C.L.      189(342) 205
Liouville operator, microscopic solvation dynamics, instantaneous normal mode (INM)      235
Liquid crystals, atomistic models, molecular structural-orientational coupling      89—92
Liquid crystals, computer simulation protocols      44—46
Liquid crystals, interaction potentials, realistic molecular models      85—86
Liquid crystals, interactions and electrostatic forces      63—78
Liquid crystals, interactions and electrostatic forces, anisotropic attractive interactions      63—71
Liquid crystals, interactions and electrostatic forces, dipolar and quadrupolar forces      72—78
Liquid crystals, interfacial and confined geometry      97—99
Liquid crystals, intramolecular properties, ab initio determination      100—107
Liquid crystals, intramolecular properties, ab initio determination, electronic structure      101—104
Liquid crystals, intramolecular properties, ab initio determination, molecular flexibility      104—105
Liquid crystals, intramolecular properties, ab initio determination, motivation      100
Liquid crystals, intramolecular properties, ab initio determination, shape-dependent electronic structure      105—107
Liquid crystals, molecular flexibility      78—85
Liquid crystals, molecular flexibility, ab initio determination      104—105
Liquid crystals, molecular flexibility, excluded-volume models      81—82
Liquid crystals, molecular flexibility, research background      78—80
Liquid crystals, molecular flexibility, soft potential models      82—85
Liquid crystals, molecular properties in devices      43—44
Liquid crystals, nonpolar excluded-volume molecular models      59—63
Liquid crystals, nonpolar excluded-volume molecular models, characteristics of      59—61
Liquid crystals, nonpolar excluded-volume molecular models, phase behavior and material properties      61—63
Liquid crystals, reorientational motion      92—97
Liquid crystals, research background      40—41
Liquid crystals, structure and translational diffusion      86—89
Liquid crystals, structure-property relationships      46—59
Liquid crystals, structure-property relationships, calamitic liquid crystal molecular structure      46—48
Liquid crystals, structure-property relationships, elasticity and viscosity      55—59
Liquid crystals, structure-property relationships, high-pressure polymorphism      54—55
Liquid crystals, structure-property relationships, molecular electronic and optical properties      48—51
Liquid crystals, structure-property relationships, phase stability and      51—54
Liquid crystals, types and translations of      42—43
Litovitz, T.A.      343(287) 431
Littlechild, J.A.      117(45) 196
Local density approximation (LDA), ab initio simulations of supercritical water      156—160
Local density approximation (LDA), electronic structure of liquid crystals      102
Local-density perturbation, supercritical aqueous solutions, ion speciation and      179—182
Loeffler, G.      121—123(104) 148(104) 198
Logvin, Y.A.      463(164) 494(297) 495(164 299—301) 500(301) 507 511
Loiko, N.A.      495(300—301) 500(301) 511
Lomov, A.S.      466(181) 508
Long, F.H.      220(81) 265(228) 425 429
Long-range ordering, liquid crystal molecules      41—42
Long-wavelength instabilities, two-dimensional spatial patterns      469—472
Longa, L.      68(77 80) 70(93) 71(93) 110
Longeri, M.      79(121) 111
Longhi, G.      89(145) 111
Longitudinal polarizability, frequency dependence      26—27
Lorentz (type I) absorption vs. Van Vleck — Weisskopf — Froelich absorption      8—10
Lorentz (type I) absorption, collisional effects and      6—7
Lorentz (type I) absorption, comparison of other functions with      31—34
Lorentz (type I) absorption, step, aftereffect and pulse functions for      17—18
Lorentz — Lorenz relationship, liquid crystal molecules      49—51
Lorentz, H.A.      5—6(13) 36
Loring, R.F.      211(3 18) 222(106) 224(3 18) 293(18) 422 425
Loriot, G.      69(83) 110
Lotshaw, W.T.      286(248) 316(248) 430
Lu, H.      220(81) 265(228) 425 429
Lubensky, T.C.      477(237) 509
Lucchessini, F.      79(121) 111
Luck, W.A.P.      119(82) 197
Luckhurst, G.R.      44—45(6) 48(9) 52—53(6) 64—65(59) 66(59 61) 67(68—69) 68(77) 77(116) 108—111
Ludena, E.      101(180) 112
Ludiato, L.      437(24) 439(24) 495(24) 503
Luedermann, S.      170(278) 203
Lueke, M.      213(26b) 227(26b) 236—237(26b) 248(26b) 335(26b) 345(26b) 360(26b) 364(26b) 367(26b) 374(26b) 404(26b) 419—420(26b) 423
Luo, H.      187(334—337) 204
Luss, D.      487(285) 501(376) 502(384) 506(285) 510 513
Luzar, A.      119(68) 196
Lyotropic liquid crystals, characteristics of      42—43
Ma, J.      222(101—103) 294(101—103) 334(101—103) 425
Ma, Y.      179(312—313) 204 332(278) 431
Mackay, A.L.      478(243—244) 509
Macroscopic correlations, molecular studies and      193—194
Macroscopic polarization, vs. microscopic polarization, wavenumber- dependent direct correlation functions      255—256
Madden, P.A.      265(219—220) 272(219—220) 429
Maddox, M.W.      160(219) 188(219) 201
Madhusoodanan, M.      323(271a) 430
Madura, J.D.      129—132(121) 198
Magnetic anisotropy, defined      2—3
Magnetic fluids, behavior of      2—3
Magnetic fluids, frequency-dependent susceptibility, calculations      28—30
Magnetic moment dynamics, collisional equations      5—6
Magnetic moment dynamics, mechanical torque and      4
Mahajan, K.      408(334) 432
Maier — Maier equations, liquid crystal dielectric permitivitty      51
Maier, M.      223(125) 356(125) 426
Maisel, L.      7(15) 20(15) 22(15) 36
Majer, V.      117(41) 171(41) 179(41) 181(41) 196
Makinen, M.W.      211(7) 422
Malchow, H.      501(354) 512
Maleckrassoul, R.      93(158) 112
Malevanets, A.      480(250) 501(372) 509 513
Maliniak, A.      80(130) 87(130) 92(130) 98(130) 111
Malomed, B.A.      447(113) 454(142 146) 466(170) 467(170) 468(191) 469(170) 486(170) 500(191 343) 506—508 512
Malzbender, R.      99(175) 112
Mandel, P.      480(267) 484(267) 491(267) 510
Manneville, P.      437—438(21) 450(21) 453—455(21) 459(21) 467(21) 469—470(21) 503
Mansoori, G.A.      183(326) 204
Marchese, F.T.      118(57) 119(57) 130(57) 196
Marcus, R.A.      211(11) 272(237) 297(11 254—255) 313(237 264) 325(264) 326—328(237 264) 414(254—255) 422 429—430
Marcus, Y.      160(222) 163(222) 181(222 320) 183(222) 187(222) 201 204
Marek, M.      436(10) 501(355) 503 512
Markel, F.      362(295) 431
Markovian theory, microscopic solvation dynamics, ionic conductivity limits, continuum models      402
Markovian theory, solvent translational modes      227—228
Marlow, M.      501(362) 513
Maroncelli, M.      213(27a 28—31) 215(29—31 34—36 38a) 217(51 54) 218(27a 35 62) 219(29 66) 222(30 104 116) 224(31) 229(35 150 152) 230(27a 29 66) 235(116) 246(27a 29 31 34—35 38a 51 54 66 194) 247(38a 194 196) 259(210—211) 264(29 35—36) 269(29) 271(29) 272(35) 273(29 35) 276(31) 277—278(27a 28—31 34—36 38a 51 54 66) 279—281(66) 285(66) 287—288(66) 290—291(66) 293(66) 294(104) 295(104 116) 296—297(66) 298(36 152) 299(152) 301(257) 305(261) 307(261) 313(261) 315(27a 66 150) 316(27a 150) 317—318(27a) 320(27a) 322(66) 323(271) 324(116) 331(29 35) 335(66) 344(116) 364(27a 29 66) 392(66) 407(327) 409(29) 414(66) 423—430 432
Marques, C.M.      476(233) 509
Marshall, C.D.      94(160) 112
Marshall, W.L.      116(24) 173(294) 195 203
Martch, M.A.      116(37) 195
Martin, J.      220(80) 263(80) 425
Martin-Rodero, A.      157(208) 200
Martino, C.J.      116(21) 195
Martyna, G.      133(159) 199
Mashimo, S.      284—285(246) 430
Masiar, P.      469(192) 508
Mason, C.P.      62(48—49) 68(78) 69(49 78) 109—110
Masters, A.J.      62(48) 68—69(78) 109—110
Math, J.      238(178) 239(183) 242(178) 251(178) 428
Mathlouthi, M.      160(228) 201
Matkowsky, B.J.      211(8) 422
Matsuba, K.      471(217) 509
Matteoli, E.      183(326) 204
Matubayasi, N.      117(53—54) 128(53—54) 196 329(274) 431
Mausbach, P.      155(197) 200
Maxwell relaxation time, solvation dynamics, electrolyte solutions      408
Mayer, F.      117(43) 196
Mayer, J.      79(124) 111
Mazars.      92(152) 112
Mazin, W.      489(293) 495(293 309) 498(293 309) 511
Mazurenko, Y.T.      216(39) 229(146) 246(39) 277(39) 423 427
McClean, E.R.      412(341) 433
McClellan, A.L.      268(233) 318(233) 429
McColl, J.      67(65) 109
McConnell, J.      3(7) 29(7) 36
McCormick, W.D.      441(44) 445(62 65) 450(129 136 138) 463(160) 495(129) 498(129 136 138) 499(138) 502(129) 504 506—507
McDonald, G.S.      495(306) 511
McDonald, I.R.      116(6) 133(165) 183(6) 194 199 236(174) 243(174) 246(174) 252(174) 265(219) 272(219) 339(174) 347(174) 364(174) 367—368(174) 370(174) 374(174) 419—421(174) 428—429
McDonald, S.M.      160(227) 201
McGreevy, R.L.      127(117) 160(213) 198 201
McGrother, S.      48(10) 61(41) 72(98) 73(98 102) 74(102—103) 75(103 106) 76(98) 108—110
McLendon, G.      211(7) 422
Mclnnis, J.      213(28) 277—278(28) 423
McMannis, G.E.      211(22) 423
McMorrow, D.      286(248) 316(248) 430
McQuarrie, D.A.      338(285) 370(285) 431k
McTague, J.      61(38) 109 473(224) 509
Mean spherical approximation (MSA), ion solvation dynamics      252—253
Mean spherical approximation (MSA), ion solvation dynamics, correlation function      330
Mean spherical approximation (MSA), ion solvation dynamics, wavenumber-dependent direct correlation functions      256
Mean spherical approximation (MSA), ionic conductivity limits, aqueous solutions      387—388
Mean spherical approximation (MSA), microscopic polarization, solvation dynamic structure factor transverse component, calculation of      257—258
Mean spherical approximation (MSA), monohydroxy alcohols solvation dynamics, static correlation functions      282
Mean spherical approximation (MSA), nonassociated polar solvation dynamics, ion-dipole direct correlation function      317
Mean spherical approximation (MSA), rotational dissipative kernel, single particle limit      244
Mean spherical approximation (MSA), water solvation dynamics, wavenumber-dependent ion-dipole direct correlation functions      265
Mean spherical approximation (MSA), wavenumber-dependent orientational self-dynamic structure factor      259—260 418—419
Meech, S.R.      275(241) 430
Mehrotra, P.K.      118(57) 119(57) 130(57) 196
Mehta, A.      219(69) 329(69) 416(69) 424
Meinhardt, H.      436(13—14) 438(13—14) 439(13) 503
Meisowicz viscosities, liquid crystal elasticity and velocity      58—59
Meixner, M.      484(278) 488(278) 490(278 295) 491(278) 495(295) 510—511
Melo, E.      463(161) 497(161) 507
Memmer, R.      85(139—140) 111
Memory functions, microscopic solvation dynamics      228
Memory functions, monohydroxy alcohols solvation dynamics      282—285
Memory functions, orientational relaxation, slow, viscous liquids      304
Menzel, H.      97(172) 112
Menzinger, M.      484(280) 501(371—372) 510 513
Merino, J.      157(209) 201
Merkin, J.      501(373) 513
Meron, E.      436(16) 438(16) 450(138) 498(138 323) 499(138) 503 507 511
Merritt, F.R.      12(19) 36
Mertens, E.      501(357) 502(381) 512—513
Mesmer, R.E.      117(48 51) 118(62) 120(99) 124(62) 126(62) 157—158(99) 160(224) 161(51 99) 163(48 251) 165(99) 170(273) 173(48 295 298—299) 175(224 295 310) 176(295) 179(318) 181(318) 183(51) 185—186(51) 193(51) 196—197 201—204
Mesogenic matter, calamatic liquid crystal structure      46—48
Mesogenic matter, elasticity-viscosity measurements      55—59
Mesogenic matter, electronic and optical properties      48—51
Mesogenic matter, electronic structure of liquid crystals      103—104
Mesogenic matter, liquid crystals as      41—42
Mesogenic matter, molecular flexibility in      79—80
Metens, S.      438(27) 447(99) 457(99 151—152) 465(99) 471(212) 473—474(151) 475(225) 480(151) 490(294) 495(27 307—308) 497(27 99 225) 498(151 307—308) 499(294) 503 505 507 509 511
Methanol, dipolar solvation, numerical results      290—291
Methanol, ionic conductivity limits      393—394
Methanol, ionic solvation, numerical results      285—287
Mezei — Beveridge geometric criterion, microscopic behavior of supercritical water, hydrogen bonding      148—156
Mezei, M.      118(57) 119(57 64) 130(57) 148(64) 150—151(64) 153(64) 170(279) 196 202
Micellar systems, solvation dynamics in      411
Micheau, J.-C.      501(359) 512
Microscopic theories of solvation dynamics, Brownian oscillator model      233—235
Microscopic theories of solvation dynamics, Calef/Wolynes theory      226
Microscopic theories of solvation dynamics, dynamic mean spherical approximation model      226—230
Microscopic theories of solvation dynamics, Hubbard — Onsager theory of ionic conductivity      401—407
Microscopic theories of solvation dynamics, instantaneous normal mode technique      235
Microscopic theories of solvation dynamics, ionic conductivity limits, concentration dependence      415
Microscopic theories of solvation dynamics, ionic conductivity limits, dielectric friction calculation      371—374
Microscopic theories of solvation dynamics, ionic conductivity limits, electrolyte solutions      366—371
Microscopic theories of solvation dynamics, polar solvents, dipolar solvation dynamics      253—254
Microscopic theories of solvation dynamics, polar solvents, dynamic structure factor calculations      257—260
Microscopic theories of solvation dynamics, polar solvents, ion solvation dynamics      250—253
Microscopic theories of solvation dynamics, polar solvents, multipolar molecular expression      248—250
Microscopic theories of solvation dynamics, polar solvents, relaxation rate calculations      256—257
Microscopic theories of solvation dynamics, polar solvents, Stockmayer liquid model      260—263
Microscopic theories of solvation dynamics, polar solvents, theoretical background      246—248
Microscopic theories of solvation dynamics, polar solvents, wavenumber-dependent correlation functions      254—256
Microscopic theories of solvation dynamics, surrogate Hamiltonian theory      230
Microscopic theories of solvation dynamics, theoretical background      225—226
Microscopic theories of solvation dynamics, underdamped non-Markovian theory      230—233
Microscopic theories of solvation dynamics, vibrational energy relaxation (VER), binary friction and      346—349
Middya, U.      487(285) 502(285 384) 510 513
Miesowicz, M.      58(28) 108
Migus, A.      220(80 82) 263(80) 265(82) 274(82) 425
Mikhailov, A.      501(357) 502(381—382 385) 512—513
Miller, J.R.      211(7) 422
Miller, S.      402(322) 405(322) 432
Mills, R.      129—130(125) 198
Mimura, M.      498—499(321) 511
Minimal surfaces, three-dimensional pattern selection      477—480
Minko, A.      95(168) 112
Minnich, B.H.      116(27) 195
Minoni, G.      89(147) 111
Minx, C.      97(172) 112
Mita, S.      74(104—105) 110
Mitchell, D.J.      253—255(206) 265(206) 282(206) 304(206) 330(206) 368(206) 378(206) 385(206) 393(206) 399(206) 428
Mitton, B.G.R.      412(341) 433
Mitton, D.B.      116(36) 195
Mixed compounds, solvation dynamics in      220
Mixed compounds, solvation dynamics in, biphasic solvent response      220
Mixed compounds, solvation dynamics in, dielectric relaxation and      414—415
Mixed mode reaction-diffusion, future spatial pattern research      500—502
Mixed mode reaction-diffusion, steady-Hopf mode interactions      484—486
Mizan, T.I.      116(21) 119(71) 129—130(127) 133(166) 134(168) 142(127) 153(71 192) 195 197—200
Mode-coupling theory (MCT), dipolar liquids      236
Mode-coupling theory (MCT), ion solvation dynamics      251—253
Mode-coupling theory (MCT), ionic conductivity limits, continuum models      402—407
Mode-coupling theory (MCT), ionic conductivity limits, electrolyte solutions, local friction calculation      370—371
Mode-coupling theory (MCT), ultrafast solvation, dense liquids, nonpolar solvation in      338—340
Mode-coupling theory (MCT), vibrational energy relaxation (VER) and, biphasic frictional response      350—353
Mode-coupling theory (MCT), vibrational phase relaxation and (VPR), force-force time correlation function (FFTCF)      360—362
Modell, M.      116(13 16 18 38) 163(16) 173(38) 195
Mohamed, R.S.      162(241) 171(241) 187(241) 190(241) 202
Mohanty, U.      301—302(256a) 430
Mokerjee, C.D.      79(122) 111
Molecular asymmetry, supercritical aqueous solutions, kinetic rate constants, solvation effects on      189—192
Molecular flexibility, liquid crystals      78—85
Molecular flexibility, liquid crystals, ab initio determination      104—105
Molecular flexibility, liquid crystals, excluded-volume models      81—82
Molecular flexibility, liquid crystals, research background      78—80
Molecular flexibility, liquid crystals, soft potential models      82—85
Molecular hydrodynamic theory (MHT), dipolar liquids, coupled equations      236—239
Molecular hydrodynamic theory (MHT), dipolar liquids, free energy functional      239—241
Molecular hydrodynamic theory (MHT), dipolar liquids, solutions used in      241—242
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå