Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 109

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 582

Äîáàâëåíà â êàòàëîã: 22.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Brusselator model, two-dimensional spatial patterns, long-wavelength instabilities and phase equations      469—472
Brusselator model, two-dimensional spatial patterns, re-entrant hexagons      464—465
Bucher, M.      171(286) 203
Buchner, M.      222(115) 235(115) 295(115) 324(115) 344(115) 426
Buchner, R.      266(230—231) 285(230) 290(230) 305(230—231) 307(230—231) 310(231) 429
Buckingham potentials, atomistic liquid crystal molecules      92
Buechel, M.      97(172) 112
Bug, A.L.R.      213(25) 344—345(288) 350(288) 423 431
Buhse, L.E.      217(52) 246(52) 277(52) 424
Bulk material properties, Gay — Berne liquid crystal model      68—70
Bulk polarization, vs.nearest-neighbor contribution      298—301
Buontempo, U.      119(96) 197
Burger, M.      441(42) 449(126) 499(42) 504 506
Burgess, J.      181(321) 204
Burns, D.C.      43(4) 108
Busey, R.H.      163(251) 173(299) 202—203
Busse, F.H.      445(77) 463(77) 471(207) 500(77 207 352) 505 508 512
Butanol, ionic solvation, numerical results      288—290
Bycklyng, E.      164(261) 202
Cagnon, S.      97(169) 112
Calamatic liquid crystals, molecular structure of      46—48
Calef, D.E.      226—227(133) 249(133) 277(133) 426
Calef/Wolynes theory, microscopic solvation dynamics      226
Callahan, T.K.      476(227 230—231) 509
Callaway, M.J.      97(174) 99(174) 112
Callen, H.B.      20(28) 37
Camp, P.J.      62(44 48) 68—69 78 109—110
Cannel, D.S.      447(110) 495(305) 497(305) 506 511
Car, C.      77(117) 111
Car, R.      124(108) 156(108 198) 159(198) 198 200
Carboni, C.      53(22) 108
Care, C.      67—68(71—72) 109—110
Careri, G.      411—412(339) 433
Carey, D.M.      120(101) 197
Carmeli, B.      211(8) 422
Carney, G.D.      135(170) 199
Carnie, S.L.      131(134) 198
Carr — Parrinello method, ab initio simulations of supercritical water      156—160
Carter E.A.      215(37) 246(37) 277(37) 423
Carter, E.A.      170(276) 203
Carter, R.W.      117(41) 171(41) 179(41) 181(41) 196
Castellan, G.W.      223—224(128) 363—365(128) 367(128) 378(128) 381(128) 397(128) 415(128) 426
Castets, V.      441(47) 445(72 81) 446(81) 447(47 81) 472(47 72) 477(72) 504—505
Castner, E.W.      215(38) 216(42—43) 217(51 54 57) 218(42—43) 219(38) 229(150) 246(38 51 54 57) 247(38) 277(38 42—43 51 54 57) 306(262) 310(262) 313(262 266) 314(262) 315—316(150) 323(271) 325(43) 409(335) 410(43) 423—425 427 430 432
Catalano, D.      53(19) 108
Cates, M.E.      476(233) 509
Cavity formation, supercritical aqueous solutions, intermolecular potentials      165—173
Celebre, G.      79(121) 111
Central force model, supercritical water analysis, microscopic behavior      134—135
Cesaro, A.      442(51) 504
Chain structure, liquid crystal molecule phase stability and      53—54
Chakrabarti, A.      70(92) 110
Chalam, M.      63(55) 65—66(55) 85(55) 109
Chan, D.Y.C.      253—255(206) 265(206) 282(206) 304(206) 330(206) 368(206) 378(206) 385(206) 393(206) 399(206) 428
Chan, L.      54(23) 108
Chandler, D.      119(68) 196 211—212(4 4a) 239(179) 260(213) 275(151) 278(151) 315—316(151) 338(213) 419(213) 422 427—429
Chandra, A.      211(15a) 214(15a) 219(72) 220(76) 224(15a) 227(15a 140—142) 228—232(15a) 236—238(15a) 239(15a 180) 240(15a 141) 241(15a) 243(15a 189) 244(15a) 246—247(15a) 249(198) 250(209) 251(15a) 253(15a) 257(15a) 259(209) 266(15a) 292(15a) 303(15a) 315(15a) 324(15a) 328(15a) 372(15a) 407(331—333) 408(331—334) 410(15a) 414(72) 415(72 344) 422 424—426 428—433
Chandrasekhar, J.      129—132(121) 172(291) 198 203
Chandrasekhar, S.      42(2) 44(2) 54(24—25) 108 253(203) 339(203) 428 477(234) 509
Chang, H.-C.      484(279) 489(292) 510—511
Chang, Y.J.      215(38) 219(38) 246—247(38) 277(38) 306(262) 310(262) 313(262 266) 314(262) 423 430
Chapman, C.E.      215(38a) 246—247(38a 194) 277(38a) 305(261) 307(261) 313(261) 407(327) 423 428 430 432
Chapman, M.J.      412(341) 433
Chate, H.      484(277) 510
Chaudhuri, I.      500(350) 512
Chemical reaction rate constants, research background on      211—213
Chemielewski, A.      59(30) 69(30) 108
Chen, S.      469(195) 508
Cheng, M.      489(292) 511
Chialvo, A.      117(50—51) 118(62) 119(72 89—90) 120(89) 121(72 89) 124(62) 126(62) 131(89 135) 132(72 89) 133(72 144—145) 135(144—145) 138(145) 140(144) 141(72 90) 142(145) 143(135) 148(72 89 189) 149(72 89 190) 153(72 89) 154(145) 160(216 224 235) 161(50—51 90) 162(50 90 235 238) 165(50 90 189—190) 166(266) 168(90) 170(273—274) 175(273 224 310) 179(318) 181(318) 183(50 235 238 266 323) 184(50 235 331) 185(50—51 216 238 266) 186(50—51 235) 188(50 266) 189(235) 190—191(266) 193(51 310) 196—204
Chiral phases, liquid crystal molecular flexibility      85
Chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, Turing pattern experiments, gel and color indicator, new systems for      449—450
Chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, Turing pattern experiments, gel and color indicator, ramp and dimensionality parameters      446—447
Chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, Turing pattern experiments, gel and color indicator, reaction-diffusion models      456—458
Chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, Turing pattern experiments, gel and color indicator, role of      442—445
Chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, two-dimensional spatial patterns, subcritical regimes      466—467
Chlorite-iodide-malonic acid (CIMA) system, steady-Hopf mode interactions      481—488
Chlorite-iodide-malonic acid (CIMA) system, Turing patterns, experimental protocols for      441—450
Chlorite-iodide-malonic acid (CIMA) system, Turing patterns, research background      438
Chlorite-iodide-malonic acid (CIMA) system, Turing patterns, Turing — Hopf instability      448—449
Cho, M.      213(30) 214(33) 215(30) 222(30 33 111) 234(168—169) 235(111) 245(168—169) 246(30 33) 264(168) 277—278(30 33) 295(111 253) 324(111) 344(111) 417(351) 423 425 427 430 433
Christiansen, B.      454(143) 500(143) 507
Christmann, K.      502(383) 513
Chua, L.O.      468(190) 508
Ciccotti, G.      170(276) 175(309) 203
Ciliberto, S.      445(76) 469(76 203) 505 507
Cladis, P.      72(97) 110
Clancy, P.      160(227) 201
Clark, J.H.      217(52) 246(52) 277(52) 424
Clark, N.A.      80(127) 99(175) 111—112
Clark, S.J.      79(126) 101(177—178) 102—103(182) 105(178) 111—113
Clausius Clapeyron equation, liquid crystal polymorphism      54—55
Cleaver, D.      67—68(71—72) 97(174) 99(174) 101(178) 105(178) 109—110 112
Clementi, E.      133(154 157) 135(171—172) 199
Clever, H.L.      163(245) 202
Clifford, A.A.      116(9) 189(341) 194 204
Closs, G.L.      211(7) 422
Clouter, M.J.      363(296) 431
Cluster molecules, supercritical water (SCW), ion solvation dynamics, slow long-time decay rate      332—333
Coalson, R.D.      280(244) 430
Cochran, H.D.      120(99) 148(188—189) 149(188—190) 157—158(99) 160(215) 161(99) 165(99 188—190) 170(273) 197 200—202
Codimension-two Turing Hopf point (CTHP), defined      480
Codimension-two Turing Hopf point (CTHP), experimental protocols      447—449
Codimension-two Turing Hopf point (CTHP), reaction-diffusion models      456—458
Codimension-two Turing Hopf point (CTHP), spatial patterns      480—495
Codimension-two Turing Hopf point (CTHP), spatial patterns, genericity      491—492
Codimension-two Turing Hopf point (CTHP), spatial patterns, steady-Hopf mode interactions      481—488
Codimension-two Turing Hopf point (CTHP), spatial patterns, steady-Hopf mode interactions, bistability and localized structures      486—488
Codimension-two Turing Hopf point (CTHP), spatial patterns, steady-Hopf mode interactions, mixed modes      484—486
Codimension-two Turing Hopf point (CTHP), spatial patterns, subharmonic instabilities      488—490
Codimension-two Turing Hopf point (CTHP), spatial patterns, two-dimensional spatiotemporal dynamics      493—495
Codimension-two Turing Hopf point (CTHP), Turing — Hopf interaction and      480—481
Coffey, W.T.      2(2) 36
Cohen, E.G.D.      239(181) 428
Cole — Davidson model, monohydroxy alcohols solvation dynamics, memory functions      284—285
Cole — Davidson model, slow, viscous liquid solvation dynamics      305 310—313
Cole, K.S.      31(37) 37
Cole, R.J.      31(37) 37
Cole-Cole plots, type II resonance absorption patterns      31—34
Coles, H.      53(22) 108
Colet, P.      495(298) 511
Colinet, P.      480(258) 495(258) 510
Collective solvent polarization, ultrafast polar solvation, continuum model of, extended molecular hydrodynamic theory (EMHT) and      324—326
Collins, P.      67(66) 109
Collision broadening, Lorentz absorption and      6—7
Collision broadening, Lorentz vs. Van Vleck — Weisskopf — Froelich absorption      8—10
Collision broadening, Van Vleck — Weisskopf — Froelich absorption and      8
Colonomos, P.      366(306) 369—370(306) 372(306) 382—383(306) 402(306) 404(306) 432
Color indicators, Turing pattern experiments using      443—445
Colot, J.L.      239(182) 428
Command surfaces, thermotropic liquid crystals, interfacial and confined geometry phenomena      97—99
Computer simulations, liquid crystal molecules, protocols for      44—46
Concentration dependence, ionic conductivity limits      415
Confined geometry phenomena, thermotropic liquid crystals      97—99
Confined geometry, Gay — Berne liquid crystal model      70—71
Connolly, J.F.      116(26) 195
Conradi, M.S.      117(52) 118(52) 127(52) 155(52) 196 219(67) 329(67) 424
Contact ion pairs, high-temperature electrolyte solutions      173—177
Continuous band quasi-degeneracy, pattern selection theory      454—455
Continuum models, ionic conductivity limits, aqueous solutions      382—384
Continuum models, ionic conductivity limits, electrolyte solutions      365—371
Continuum models, ionic conductivity limits, Hubbard — Onsager microscopic theory      401—407
Continuum models, ionic conductivity limits, methanol      394
Continuum models, polar solvation dynamics      216
Continuum models, polar solvation dynamics, inhomogeneous models      218
Continuum models, polar solvation dynamics, ultrafast response in dense liquids      335—343
Continuum models, supercritical aqueous solutions, intermolecular potentials      171—173
Continuum models, supercritical aqueous solutions, kinetic rate constants, solvation effects on      187—192
Continuum models, ultrafast polar solvation      323—329
Continuum models, ultrafast polar solvation, extended molecular hydrodynamic theory and      324—326
Continuum models, ultrafast polar solvation, instantaneous normal mode technique      326—327
Continuum models, ultrafast polar solvation, polar/nonpolar solvent response competition      328
Continuum models, ultrafast polar solvation, validity of, research on      328—329
Conway, B.E.      117(42) 160(225) 163(42 225) 179(42) 181(42) 183(330) 196 201 204
Coordination numbers, supercritical aqueous solutions, ion speciation and      181—182
Corner, J.      64(57) 109
Corongiu, G.      133(157) 135(171—172) 199
Correlation functions, random telegraph signal      21—22
Correlation functions, sinusoid phase changes      22—23
Corrosion, supercritical water (SCW) properties      116—117
Coullet, P.      445(76) 466(179—180) 469(76) 484(276) 498—499(330) 501(179—180) 505 508 510 512
Coulomb potentials, atomistic liquid crystal molecules      92
Coulomb potentials, electronic structure of liquid crystals      101—104
Coulomb potentials, microscopic behavior of supercritical water, molecular simulations      130—141
Coulomb potentials, supercritical aqueous solutions      163
Coulon, P.      68(73) 110
Coumarin compounds, ion solvation dynamics in      302
Coumarin compounds, slow, viscous liquid solvation dynamics      305—313
Coumarin compounds, solvation dynamics in water      263—265
Coumarin compounds, solvation dynamics in water, isotope effect      275
Coupled equations, molecular hydrodynamic theory, dipolar liquids      236—239
Cowan, D.A.      117(44—45) 196
Crain, J.      79(126) 101(177—178) 102—103(182) 105(178) 111—113
Crawford, G.      70(88) 97(170) 110 112
Crawford, J.D.      468(189) 508
Croquette, V.      466(169) 486(169) 507
Cross, C.      86(141—142) 92(141—142) 111
Cross, M.C.      437—438(19) 445(19) 447(107) 450(19) 453—455(19) 459(19) 461(19) 463(19) 469(19) 471(218) 483(19) 487(19) 503 506 509
Cross-correlations, ionic conductivity limits, electrolyte solutions      369—371
Cross-polarizability, frequency-dependent transverse polarizability      28
Crovetto, R.      162(139) 201
Cui, S.T.      160(217) 170(217) 173(217) 174(304) 201 203
Cummings, P.T.      117(50—51) 118(62) 119(72 89—90) 120(89 99) 121(72 89) 124(62) 126(62) 129—130(122) 131(89) 132(72 89 138) 133(72 139 144—145) 135(144—145) 138(145) 140(144) 141(72 90) 142(145) 148(72 89 188—190) 149(72 89 188—190) 153(72 89) 154(145) 157(90 99) 160(221 224 226 235) 161(50—51 90 99) 162(50 90 235 238) 164(255—256) 165(50 90 99 189—190) 166(266) 168(90) 170(273—274) 175(273 310) 179(318) 181(318) 183(50 235 238 266) 184(50 235) 185(50—51 238 266) 186(50—51 235) 188(50 266) 190—191(266) 193(51 310) 198(99) 196—204
Curnutte, B.      269(235) 429
Curtis, L.A.      135(170) 199
Cyclodextrin cavity, solvation dynamics in      409—410
da Rocha Miranda Pontes, J.      447(114) 506
Dab, D.      469(194) 508
Dabrowski, R.      93(154) 112
DaGama, M.      75(107) 110
Damping mechanisms, frequency-dependent transverse polarizability      27—28
Damping mechanisms, zero-frequency polarizabilities, fixed, spherical, single-domain particle      23—26
Dang, L.X.      133(143 164) 135(143) 142(143) 153(143) 177(311) 199 204
Darab, J.G.      179(312) 204
Das, A.K.      323(271a) 411(336—337) 430 432
Date, R.W.      48(9) 108
Datta, A.      411(336—337) 432
David, C.W.      133(147) 199
David, E.F.      222(113) 235(113) 295(113) 324(113) 344—345(113) 350—351(113) 426
Davies, P.      445—446(70 80) 447(70) 457(80) 466(80) 472(70) 477(70) 480(70) 498(80) 505
Davis, K.S.      116(1) 194
Day, J.A.      116(1) 194
De Jeu, W.      50—51(16) 108
De Kepper, P.      441(46—49) 442(49) 445(48 63—64 69—9—70 72 80—82) 446(48 69—70 80—81 92) 447(47 64 69—70 81 92 98) 448(63—64 92) 449(48 92 98) 457(48 80) 463(48) 465(48) 466(80) 471(47—48) 472(48 64 69—70 72 98) 477(48 63—64 69—70 72 92) 480(48 63—64 69—70 92) 485(64 92) 486(98) 487(64) 493(48 64 92 98) 494(48 69 92) 498(80) 501(48 63) 504—505
de Kronig, R.L.      21(30) 37
de la Olvera Cruz, M.      476(232) 509
de Loos, T.W.      116(25) 195
de Pablo, J.J.      132(138) 199
De Santis, A.      119(75 88) 197
De Schepper, I.      239(181) 428
De Wit, A.      438(27) 445(79 83—85) 447(85 98 102 117—118) 449(98 118—119) 454(79) 457(79 119) 461(84) 463—464(84) 466(79) 467(85) 469(85) 472(98) 473(79 117 222) 475(117 222) 476(79 117 222) 477(102 117) 479(117) 480(118) 483(271) 484(119 271 278) 486(79 98 118—119) 487(119) 488(118—119 278) 489(199 291) 490(199 278) 491(278 291) 493(98 119) 494(119 271) 495(27 119) 497(27 84) 499(117) 501(79 85) 503 505—506 510—511
Debenedetti, P.G.      160(215) 162(241) 171(241) 187(241) 190(241) 201—202 219(67) 329(67) 424
Debliek, R.      68(73) 110
Debye relaxation parameters, ion solvation dynamics, supercritical water (SCW)      330
Debye relaxation parameters, ionic conductivity limits, aqueous solutions      383—392
Debye relaxation parameters, monohydroxy alcohols solvation dynamics, butanol ionic solvation      288—290
Debye relaxation parameters, monohydroxy alcohols solvation dynamics, memory functions      285
Debye relaxation parameters, monohydroxy alcohols solvation dynamics, methanol ionic solvation      286—287
Debye relaxation parameters, monohydroxy alcohols solvation dynamics, propanol ionic solvation      288—289
Debye relaxation parameters, nonassociated polar solvation dynamics, rotational memory kernel calculation      317
Debye relaxation parameters, polar solvation dynamics, continuum models      216
Debye relaxation parameters, slow, viscous liquid solvation dynamics      304 314—315
Debye relaxation parameters, solvation dynamics in water      265
Debye relaxation parameters, solvation dynamics in water, experimental results      269—272
Debye relaxation parameters, solvation dynamics in water, rotational dissipative kernel calculations      266—268
Debye theory of resonant absorption, blocked magnetic moment      3
Debye theory of resonant absorption, type I vs. type II absorption techniques and      10 31—34
Debye — Falkenhagen theory, solvation dynamics, electrolyte solutions      407—408
Debye — Huckel — Onsager theory, ionic conductivity limits, concentration dependence      415
Debye — Huckel — Onsager theory, ionic conductivity limits, electrolyte solutions      364—371
Debye — Stokes — Einstein (DSE) relation, wavenumber-dependent orientational self-dynamic structure factor      259—260
Debye, P.      3(5) 26(5) 29(5) 36 303(258) 305(258) 363(297) 407(330) 430—432
Decay function, linear systems theory      17—19
Declemy, A.      216(46) 217(58—59) 246(46 58—59) 277(46 58—59) 424
Dee, G.      465(167) 466(171) 507
Degeneracies, pattern selection theory      453—455
DeGennes, P.G.      42(1) 44—45(1) 108 237(176) 243(176) 428
Deissler, R.J.      500(348) 501(370) 512—513
Delrio, E.M.      64(62—63) 109
DelRio, F.      72(101) 74(101) 110
DeLuca, G.      79(121) 111
Demagnetizing forces, Landau — Lifshitz ferromagnetic resonance      12—16
DeMiguel, E.      63(55) 64(62—63) 65—66(55) 69(82) 85(55) 95(82) 109—110
Demus, D.      50(13) 108
Demyanets, Y.N.      119(86—87) 120(103) 126(103 110) 158(87 103) 159(87 103) 160(110) 197—198
Density fluctuation term, vibrational energy relaxation (VER), frequency-dependent friction calculation      345—349
Density functional theory (DFT), ab initio simulations of supercritical water      156—160
Density functional theory (DFT), dipolar liquids, molecular hydrodynamics, coupled equations      237
Density functional theory (DFT), dipolar liquids, molecular hydrodynamics, free energy functionals      239—242
Density functional theory (DFT), electronic structure of liquid crystals      101—104
Density functional theory (DFT), ionic conductivity limits, electrolyte solutions, dielectric friction calculation      372—374
Density functional theory (DFT), ionic conductivity limits, electrolyte solutions, solvent translation friction      376—378
Density functional theory (DFT), ultrafast solvation, dense liquids, nonpolar solvation in      338—340
Depolarized light scattering (DLS), liquid crystal molecules, reorientational motion      93—97
Derzhanski, A.      57(27) 108
Desai, R.C.      479(248) 509
Descalzi, O.      487(288) 510
Deutch, J.M.      240(187) 428
Deuterium isotope effect, solvation dynamics in water      268—269
Dewel, G.      436(8) 438(27) 439(8) 445(75 79 83—85 88) 447(85 98—100 102 112 117—118) 449(98 118—121) 454(79) 456(88 100 120—121 148—149) 457(75 79 88 99—100 119—121 149 152) 461(84) 463—464(84 120) 465(88 99 120) 466(79 88 120 178) 467(85 120) 469(85) 472(98) 473(79 117 222) 475(75 117 222 225) 476(79 117 222) 477(102 117) 479(117) 480(118) 483(271) 484(119 271) 486(79 88 98 118—120) 487(119) 488(118—120) 489(119 291 293) 490(119 294) 491(291) 493(98 100 119—121) 494(119 271) 495(27 119 121 293 307—309) 496(310) 497(27 84 99 225) 498(293 307—309) 499(117 294) 501(79 85 358—359 368) 503 505—513
Dey, T.J.E.      220(76) 425
Deza, R.      467(185 188) 508
Diaz,P.R.      447(116) 506
Dielectric anisotropy, liquid crystal molecules      49—51
Dielectric anisotropy, liquid crystal molecules, dipolar forces      76
Dielectric friction, ionic conductivity limits, continuum models      402—407
Dielectric friction, ionic conductivity limits, electrolyte solutions, equations for calculation      371—374
Dielectric friction, ionic conductivity limits, electrolyte solutions, local friction calculation      369—371
Dielectric friction, ionic conductivity limits, electrolyte solutions, size dependence of      379—380
Dielectric permittivity, liquid crystal molecules      50—51
Dielectric permittivity, supercritical aqueous solutions, ion speciation and      181—182
Dielectric relaxation, binary mixtures      414—415
Dielectric relaxation, ionic solvation dynamics, ethanol      287—288
Dielectric relaxation, ionic solvation dynamics, methanol      285—287
Dielectric relaxation, monohydroxy alcohols solvation, dynamics, memory functions      284
Dielectric relaxation, slow, viscous liquid solvation dynamics      304 311—313
Dielectric relaxation, solvation dynamics in organized assemblies      409—414
Dielectric relaxation, solvation dynamics in organized assemblies, biological water solutions      411—413
Dielectric relaxation, solvation dynamics in organized assemblies, cyclodextrin cavity      409—410
Dielectric relaxation, solvation dynamics in organized assemblies, micellar systems      411
Diewald, M.      501(360) 512
Differential flow-induced chemical instabilities (DIFICI), Turing pattern research and      501—502
Dillow, A.K.      189(342) 205
Dimensionality parameter, Turing pattern experiments      446—447
Dimeric systems, calamatic liquid crystal structure      48
Dimethyl sulfoxide (DMSO), ion solvation dynamics      322—323
Dimethylformamide (DMF), slow, viscous liquid solvation dynamics      310—315
Ding, K.      239(179) 428
Ding, Y.      138(177—178) 139(178) 200
Dinh, S.M.      499(336) 512
DiNola, A.      133(167) 199
Dionne, B.      454(141) 468(141) 476(228—229) 507 509
Dipolar solvation dynamics, hard and soft liquid systems      72—76
Dipolar solvation dynamics, ionic conductivity limits, electrolyte solutions      367—371
Dipolar solvation dynamics, microscopic techniques      253—254
Dipolar solvation dynamics, molecular hydrodynamic theory, coupled equations      236—239
Dipolar solvation dynamics, molecular hydrodynamic theory, free energy functional      239—241
Dipolar solvation dynamics, molecular hydrodynamic theory, solutions used in      241—242
Dipolar solvation dynamics, monohydroxy alcohols      277—301
Dipolar solvation dynamics, monohydroxy alcohols, dipolar solvation numerical results      290—292
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå