Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 109

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 582

Äîáàâëåíà â êàòàëîã: 22.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Ion-dipole direct correlation function, calculation of      254—256
Ion-dipole direct correlation function, ion solvation dynamics      250—253
Ion-dipole direct correlation function, ion solvation dynamics, supercritical water (SCW)      330
Ion-dipole direct correlation function, ionic conductivity limits, aqueous solutions      384
Ion-dipole direct correlation function, ionic conductivity limits, electrolyte solutions      368—371
Ion-dipole direct correlation function, ionic conductivity limits, monohydroxy alcohols      393
Ion-dipole direct correlation function, nonassociated polar solvation dynamics      317
Ion-dipole direct correlation function, slow, viscous liquid solvation dynamics      304 306—315
Ion-dipole direct correlation function, wavenumber-dependent functions, solvation dynamics in water      265
Ion-ion interactions, supercritical aqueous solutions, ion speciation in      193
Ionic conductivity limits in electrolyte solutions, molecular theory for      363—380
Ionic conductivity limits in electrolyte solutions, molecular theory for, dielectric friction calculations      371—374
Ionic conductivity limits in electrolyte solutions, molecular theory for, local friction calculations      369—371
Ionic conductivity limits in electrolyte solutions, molecular theory for, size dependence, dielectric friction      379—380
Ionic conductivity limits in electrolyte solutions, molecular theory for, solvation dynamics and      379
Ionic conductivity limits in electrolyte solutions, molecular theory for, static, orientational correlation functions      378—379
Ionic conductivity limits in electrolyte solutions, molecular theory for, wavenumber- and frequency- dependent solvent polarization relaxation rates      374—378
Ionic conductivity limits, aqueous solutions, ion-dipole correlation function calculations      385
Ionic conductivity limits, aqueous solutions, origin of temperature dependence and      388—389
Ionic conductivity limits, aqueous solutions, solvent isotope effect in heavy water      389—390
Ionic conductivity limits, aqueous solutions, temperature dependence and solvent isotope effects      380—392
Ionic conductivity limits, aqueous solutions, temperature dependence in water      386—388
Ionic conductivity limits, aqueous solutions, wavenumber- and frequency- dependent solvent polarization relaxation rate      385—386
Ionic conductivity limits, concentration dependence of      415
Ionic conductivity limits, halide anions      415
Ionic conductivity limits, Hubbard — Onsager theory, microscopic derivation      401—407
Ionic conductivity limits, Hubbard — Onsager theory, microscopic derivation, continuum model derivation      402
Ionic conductivity limits, Kohlrausch’s law and Walden’s rule      223—224
Ionic conductivity limits, monohydroxy alcohols      392—400
Ionic conductivity limits, monohydroxy alcohols, ethanol      396
Ionic conductivity limits, monohydroxy alcohols, methanol      394—396
Ionic conductivity limits, monohydroxy alcohols, propanol      396—398
Ionic conductivity limits, monohydroxy alcohols, static, orientational correlation functions      393
Ionic conductivity limits, monohydroxy alcohols, wavenumber- and frequency- dependent solvent polarization relaxation rates      392—393
Ionic conductivity limits, solvation dynamics and, Kohlrausch’s law      223—224
Ionic conductivity limits, solvation dynamics and, Walden’s rule      224
Ionic conductivity limits, supercritical water (SCW), solubility and      416—417
Ionic conductivity limits, water-alcohol mixtures      416
Ionic mobility      see "Ionic conductivity limits"
Ionic solute parameter, solvation dynamics in water, calculation of      268
Isbister, D.      240(187) 249(199) 259(187) 428
Isobaric-isothermal Monte Carlo simulations, ion speciation, high-temperature electrolyte solutions      176—177
Isobaric-isothermal Monte Carlo simulations, microscopic behavior of supercritical water, hydrogen bonding      152—156
Isobaric-isothermal Monte Carlo simulations, NPT Monte Carlo simulations, liquid crystal phase diagrams      61—62
Isolated binary collision (IBC) model, vibrational energy relaxation (VER)      343—344
Isotope effects, ionic conductivity limits, aqueous solutions      380—392
Isotope effects, ionic conductivity limits, heavy water limits      389—390
Isotope effects, solvation dynamics in heavy water      274—275
Isotropic-nematic transition, Gay — Berne liquid crystal model      66—68
Isotropic-nematic transition, liquid crystal molecules, excluded volume models      82
Isotropic-nematic transition, liquid crystal molecules, Gay — Berne liquid crystal model      85
Isotropic-nematic transition, liquid crystal molecules, phase stability and      52—54
Isotropic-nematic transition, thermotropic liquid crystals      42—43
Ito, A.      498(322) 511
Ittah, V.      407(326) 432
Izus, G.      467(185 188) 508
Jackson, G.      48(10) 61(41) 72(98) 73(98 102) 74(102—103) 75(103 106) 76(98) 108—110
Jacobian matrices, bistable spatial patterns      496—498
Jacobs, G.      116(37) 195 480(264) 510
Jakobsen, P.      466(177) 487(177) 508
Jakubith, S.      487(287) 502(378) 510 513
Jana, D.      407—408(333) 432
Janik, J.A.      79(123—124) 80(123) 111
Jansco, G.      133—135(140) 199
Japas, M.L.      116(28—29) 162—164(237) 195 201 219(67) 329(67) 424
Jarzeba, W.      211(12) 229(147—149) 246(12) 263(12) 278(148) 422 427
Jedlovszky, P.      127(116) 155(194) 198 200
Jensen, M.H.      486—487(283) 510
Jensen, O.      445(88) 447(100) 449(120—121) 456(88 100 120—121 148) 457(88 100 120—121) 463—464(120) 465(88 120) 466(88 120) 467(120) 486(88 120) 488(120) 493(100 120—121) 495(121) 505—506
Jia, Y.      278—281(243) 285(243) 287—288(243) 290(243) 293—297(243) 335—336(243) 341(243) 364(243) 371(243) 392(243) 402(243) 414(243) 430
Jiang, S.M.      80(128) 111
Jimenez, R.      213(29) 215(29) 219(29) 230(29) 246(29) 264(29) 269(29) 271(29) 273(29) 277—278(29) 331(29) 364(29) 409(29 335) 423 432
Joensson, B.      129—130(126) 133(126 150) 134(126) 135(150) 137(150) 139(150) 142(150) 153(126) 198—199
Johannsmann, D.      97(172) 112
Johnson, A.E.      229(147 149) 278(148) 427
Johnson, B.      156(202) 165(202) 200
Johnson, T.      116(37) 195
Johnston, K.P.      171(280—283) 172(288—290) 192(344) 203 205 219(68—70) 329(68—70) 416(68—70) 417(350) 424 433
Jonas, J.      116(23) 195
Jones, G.      416(347) 433
Jones, W.J.      117(43) 196
Jonkman, A.M.      219(64) 230(64) 246(64) 277(64) 278(64) 417(352) 420(64) 424 433
Joo, F.Y.      265(227) 429
Joo, T.      214(33) 222(33) 246(33) 277(33) 278(33 243) 279—281(243) 285(243) 287—288(243) 290(243) 293—297(243) 335—336(243) 341(243) 3634(243) 392(243) 402(243) 414(243) 417(351) 423 430 433
Jordanides, X.J.      273—274(239a) 429
Jorgensen, W.L.      119(70) 129—132(121) 133(146) 148(186) 172(291) 197—200 203
Jortner, J.      226(138—139) 227(138) 253—254(139) 258(139) 281(138) 305(138) 426
Kaatz, U.      265(225) 269(225) 429
Kadar, S.      442(56) 447(95) 449(56 95 123) 456(123) 504—505
Kagan, M.      442(56) 449(56) 504
Kahalow, M.A.      217(50) 229(50 147—148) 246(50) 277(50) 278(148) 424 427
Kai, S.      437(22) 503
Kaiser, W.      222(123) 356(123) 426
Kalbfleisch, T.S.      222(117—118) 426
Kaletta, D.      438—439(31) 503
Kalinichev, A.G.      119(74 79) 126(113) 127(113) 148(187) 152(74) 154(113 193) 155(113) 197—198 200
Kalinichev, M.      329(275) 431
Kalyuzhnyi, Y.V.      162(238) 166(266) 183(238 266) 185(238 266) 188(266) 190—191(266) 201—202
Kaminsky, R.      117(39) 195
Kang, T.J.      217(50 53) 229(50 148—149) 246(50 53) 277(50 53) 278(148) 424—425
Kaper, T.J.      498(332) 512
Kapral, R.      170(276) 175(309) 203 403(324) 432 436(5) 438(5) 467(186) 469(192—193) 480(5 250) 500(349) 501(193 366) 503 508—509 512—513
Karaborni, S.      120(99) 148—149(188) 157—158(99) 161(99) 165(99 188) 197 200
Karplus, M.      172(293) 203
Katayama, Y.      501(358) 512
Katritzky, A.R.      116(11) 194
Kauzman, W.      265(224) 269(224) 272(224) 429
Kauzmann, W.      116(3) 135(3) 194
Kay, R.L.      223(131) 363(131) 381(131) 384(131) 386—387(131) 394(131) 396—397(131) 415(131) 416(345) 426 433
Kayser, R.E.      365—366(302) 383(302) 431
Keener, J.      480(269) 482(269) 510
Keifte, H.      363(296) 431
Kell, G.S.      116(4) 130(4) 163(4) 172(4) 194
Kelly, J.M.      13(38) 37
Kemer, B.S.      437(26) 439(26) 498(26 318) 503 511
Kemeter, K.      219(65) 230(65) 246(65) 277—280(65) 285(65) 291(65) 295(65) 297(65) 364(65) 392(65) 414(65) 424
Kemp, S.E.      160(229) 201
Kenrick, G.W.      21(32) 37
Kerr approximation, microscopic solvation dynamics      228—229
Kerr relaxation times, acetonitrile, ion solvation dynamics      318—320
Kerr relaxation times, microscopic solvation dynamics, Brownian oscillator model      234—235
Kerr relaxation times, monohydroxy alcohols solvation dynamics, methanol ionic solvation      286—287
Kerr relaxation times, nonassociated polar solvents      316—317
Kerr relaxation times, rotational dissipative kernel, collective limit of      244—245
Kettunen, P.      500(351) 512
Kevrekidis, I.G.      467(183) 508
Keyes, T.      222(117) 403(325) 426 432
Khoo, I.      50(11) 51(11) 54(11) 108
Kidachi, H.      457(155) 480—482(155) 488(155) 507
Killilea, W.R.      116(17 19—20 37) 163(17 19—20) 195
Kim, S.      219(68) 329(68) 416(68) 424
Kimura, Y.      220(84) 425
Kindt, J.T.      264(218) 266(218) 268(218) 270(218) 280(218) 283—284(218) 286—287(218) 429
Kinetic energy, electronic structure of liquid crystals      101—104
Kinetic rate constants, supercritical aqueous solutions, solvation effects on      187—192
Kinoshita, M.      160(234) 201
Kiran, E.      116(10) 173(10) 189(340) 194 204
Kirkpatrick, T.R.      213(26) 227(26) 236—237(26) 248(26) 251(26) 335(26) 345—346(26) 360(26) 364(26) 367(26) 370(26) 372(26) 374(26) 404—405(26) 422
Kirkwood coupling parameter, ion speciation, high-temperature electrolyte solutions      173—177
Kirkwood formula, ion solvation dynamics      252—253
Kirkwood formula, ionic conductivity limits, continuum models      404—405
Kirkwood formula, ionic conductivity limits, electrolyte solutions, dielectric friction calculation      371—374
Kirkwood formula, ionic conductivity limits, electrolyte solutions, solvent translation friction      375—378
Kirkwood formula, wavenumber-dependent orientational self-dynamic structure factor      259—260
Kirkwood superposition approximations, ultrafast solvation, dense liquids, nonpolar solvation in      338—340
Kirkwood — Bluff fluctuation theory, supercritical aqueous solutions, solvation thermodynamics      183—187
Kirkwood — Froelich susceptibility theorem, zero-frequency polarizabilities, fixed, spherical, single-domain particle      25—26
Kirkwood, J.G.      183(322) 185(332) 204 253(205) 259(205) 371(205) 404(205) 428
Kirkwood’s mean force potential, vibrational energy relaxation (VER) and, binary friction, microscopic expression of      349
Kittel, C.      10(18) 12(18 21—21) 25(35) 36—37 235(170) 427 473(223) 477(223) 509
Kiyohara, K.      130(131—132) 173(132) 198
Klafter, J.      226(138—139) 227(138) 253—254(139) 258(139) 281(138) 305(138) 426
Kleebauer, M.      266(230) 285(230) 290(285) 305(285) 307(285) 429
Klein, M.T.      116(32 34) 117(39) 129—132(121) 133(148) 135(148) 195 198—199
Kliakhandler, I.L.      500(343) 512
Kloess, P.      53(22) 108
Klotz, M.R.      117(39) 195
Kneller, G.R.      133(157) 199
Knight, A.E.W.      220(78) 425
Knobloch, E.      468(189) 476(227 230—231) 480(253) 500(347) 509—510 512
Knutson, B.L.      189(342) 205
Knutson, B.L.F.      219(67) 329(67) 424
Kobayashi, R.      498—499(321) 511
Koch, A.J.      436(14) 438(14) 503
Kofke, D.      63(51) 109
Kofke, D.A.      130(130) 198
Koga, S.      466(174) 487(174) 498(174) 508
Kohlrausch, R.      217(60) 246(60) 277(60) 424
Kohlrausch’s law, ionic conductivity limits      223—224
Kohlrausch’s law, ionic conductivity limits, electrolyte solutions      364—371
Kohlrausch’s law, ionic conductivity limits, propanol      397—398
Kohn — Sham techniques, ab initio simulations of supercritical water      157—160
Kohn, W.      101(179) 112
Kollman, P.A.      177(311) 204
Kolmschate, J.M.M.      116(33) 195
Kolodner, P.      480(262) 488(262) 510
Komath, S.      231—232(159 164) 242(159 164) 245(159 164) 250(159 164) 252(159 164) 256(159) 280(159 164) 315(159 164) 316(159) 318—319(159) 324(159 164) 328(159 164) 366(159 164) 427
Komolkin, A.      80(130) 87(130) 92(130) 98(130) 111
Kondo, S.      74(104—105) 110 467(187) 508
Kondratov, O.I.      119(85) 197
Konig, N.E.      219(65) 230(65) 246(65) 277—280(65) 285(65) 291(65) 295(65) 297(65) 364(65) 392(65) 414(65) 424
Korenowski, G.M.      120(101) 197
Korzinov, L.N.      496(311) 511
Kosower, E.M.      211(10) 407(326) 422 432
Kottish, P.H.      216(46) 217(58) 246(46 58) 277(46 58) 424
Kovalenko, S.      219(65) 230(65) 246(65) 277—280(65) 285(65) 291(65) 295(65) 297(65) 335(284) 364(65) 392(65) 414(65) 424 431
Kramer, L.      447(107) 466(171) 480(255) 506 510
Kramers — Kronig relations, fluctuation theory autocorrelation function      21
Kramers, H.A.      21(29) 37 211—213(4) 422
Kramer’s theory of crossing reactions, biphasic solvent response      213
Krawczyk, J.      79(124) 111
Kresse, H.      93(154) 112
Krichevskii’s parameter, supercritical aqueous solutions      162—163
Krichevskii’s parameter, supercritical aqueous solutions, intermolecular potentials      165—173
Krichevskii’s parameter, supercritical aqueous solutions, kinetic rate constants, solvation effects on      191—192
Krichevskii’s parameter, supercritical aqueous solutions, solvation thermodynamics      185—187
Krischer, K.      467(183) 502(385) 508 513
Krishan, K.      439(39) 504
Kroemer, G.      79(125) 95(125 167—168) 111—112
Kroger, M.      82(134) 111
Krogh-Jespersen, K.      138(177—178) 139(178) 200
Kronecker delta functions, wavenumber-dependent orientational self-dynamic structure factor      418—419
Kryachko, E.      101(180) 112
Kuang, W.      480(255) 510
Kuball, H.      85(139—140) 111
Kubo relation, fluctuation theory      21
Kubo relation, frequency-dependent longitudinal polarizability      26—27
Kubo relation, magnetic fluid frequency-dependent susceptibility      28—30
Kubo — Oxtoby theory, vibrational phase relaxation (VPR) and      357—360
Kubo, R.      21(31) 37 238(178) 242(178) 251(178) 356—357(294) 428 431
Kulkarni, B.D.      498(333) 512
Kumar, K.      463(159) 507
Kumar, P.V.      213(27a 29) 215(29 36) 218(27a) 219(29) 230(27a 29) 246(27a 29 36) 264(29) 269(29) 271(29) 273(29) 277—278(27a 29 36) 298(36) 315—318(27a) 320(27a) 331(29) 364(27a 29) 409(29) 423
Kumazaki, S.      265(229) 275(229) 429
Kuramoto — Sivashinsky equation, steady-Hopf mode interactions      484—488
Kuramoto, Y.      457(154) 466(174) 484(272 274) 487(174) 498(174 274) 507—508 510
Kurnikova, M.G.      280(244) 430
Kusalik, P.G.      119(80) 133(141) 135(141 174) 138(141 174) 142(141 174) 179(328) 197 199 204 272(239) 429
Kuwabara, S.      284—285(246) 430
Kuwajima, S.      133(151) 135(151) 199
Kuznetsov, S.P.      501(368) 513
Laaksonen, A.      80(130) 87(130) 92(130) 98(130) 111
Laasonen, K.      156(198) 159(198) 200
Lacalli, T.C.      445(82) 447(82) 505
Lacey, D.      54(23) 108
Ladanyi, B.M.      219(73—75) 222(114—115) 235(114—115) 247(114) 295(114—115) 324(114—115) 325—327(114) 335—336(114) 344(114—115) 424—425
Lago, S.      72—74(100) 77(100) 110
Lagrangian equations, supercritical water analysis, microscopic behavior models      139—141
Lajzerowich, J.      498—499(330) 512
Lamb, W.J.      116(23) 195
Landau — deGennes theory, Gay — Berne liquid crystal model      67—68
Landau — deGennes theory, isotropic-nematic transition, thermotropic liquid crystals      42—43
Landau — deGennes theory, liquid crystal molecules, reorientational motion      94—97
Landau — Lifshitz equation, comparison with other functions      31—34
Landau — Lifshitz equation, ferromagnetic resonance      10—16
Landau — Lifshitz equation, frequency-dependent transverse polarizability      27—28
Landau — Lifshitz equation, magnetic moment torque      4—5
Landau — Lifshitz equation, variable forms for      34—35
Landau — Lifshitz equation, zero-frequency polarizabilities, fixed, spherical, single-domain particle      23—26
Landau — Teller equation, vibrational energy relaxation (VER) and      344—345
Landau — Teller equation, vibrational energy relaxation (VER) and, high frequency quantum effects      353—355
Landau, L.      213(24) 223(24) 344(24) 423 501(369) 513
Landau, L.D.      2(4) 4(9) 13(9) 35(9) 36
Lande splitting factor, Landau — Lifshitz ferromagnetic resonance      10—16
Landman, U.      274(240) 374(240) 429
Lang, M.J.      273—274(239a) 278—281(243) 285(243) 287—288(243) 290(243) 293—297(243) 335—336(243) 341(243) 364(243) 392(243) 402(243) 414(243) 429—430
Lange, W.      463(164) 494(297) 495(164 299) 507 511
Langer, J.S.      465(167) 466(171) 507
Langevin equations      see also "Generalized Langevin equation (GLE)"
Langevin equations, microscopic solvation dynamics, Brownian oscillator model      233—235
Langevin equations, molecular hydrodynamic theory, dipolar liquids      238—239
Langevin equations, solvation dynamics in water, rotational dissipative kernel calculations      268
Langevin equations, ultrafast polar solvation      298—301
Langevin equations, ultrafast polar solvation, continuum model of, extended molecular hydrodynamic theory (EMHT) and      325—326
Langevin, D.      59(29) 69(29) 108
Langhoff, S.R.      135(170) 199
LaPenna, G.      53(19) 108
Laplace frequency, dipolar liquids, molecular hydrodynamics      241—242
Laplace frequency, microscopic solvation dynamics, Brownian oscillator model      234—235
Laplace frequency, microscopic solvation dynamics, Non-Markovian solvent inertia and underdamping      231—233
Laplace frequency, rotational dissipative kernel, collective limit of      245
Laplace transform, monohydroxy alcohols solvation dynamics, memory functions      282—285
Laplace transform, rotational dissipative kernel, single particle limit      243—246
Laplace transform, slow, viscous liquid solvation dynamics      305—313
Laplace transform, solvation dynamics in water, rotational dissipative kernel calculations      267—268
Laplace transform, Stockmayer liquid, ion solvation dynamics in      261—263
Laplace transform, translational dissipative kernel calculation      246
Laplace transform, ultrafast solvation dinamics, dense, liquid, nonpolar solvation in      339—340
Laplace transform, vibrational phase relaxation (VPR), Kubo — Oxtoby theory      357—360
Laradji, M.      479(248) 509
Laria, D.      217(71) 329—334(71) 424
Larmor angular velocity, Landau — Lifshitz ferromagnetic resonance      12—16
Larmor precession, magnetic moment torque      4
LaRosa, C.      53(20) 108
Larsen, F.      456—457(149) 507
Larsen, R.E.      222(113) 235(113) 295(113) 324(113) 344—345(113) 350—351(113) 426
Larsson, K.      477(242) 479(242) 509
Latanision, R.M.      116(36) 195
Lateral substitution, liquid crystal molecule phase stability and      53—54
Lattice dynamics, microscopic solvation dynamics, instantaneous normal mode (INM)      235
Laubereau, A.      222(123) 356(123) 426
Lauterbach, J.      467(183) 508
Lauzeral, J.      471(212) 509
Lawniczak, A.      467(186) 469(192) 500(349) 501(366) 508 512—513
Lawson, J.R.      116(34) 195
Leadbetter, A.      59(31) 72(96) 88(144) 109—111
Lebon, G.      480(258) 495(258) 510
Lebowitz, J.L.      239(183) 428
Lecalvez, A.      93(157—158) 112
Lee, C.      156(206) 200
Lee, K.J.      445(65) 450(129—130 136—137) 495(129—130) 498(129—130 136—137) 502(129) 504 506
Lee, L.L.      160(215) 201
Lee, S.H.      160(221) 201 400(317—318) 415(317—318) 432
Lefever, R.      457(153) 507
Lega, J.      438(34) 445(76) 450(34) 453(34) 469(34 76) 471(34) 484(276) 498—499(330) 504—505 510 512
Legendre polynomial, liquid crystal molecules, reorientational motion      93—97
Legros, J.C.      480(258) 495(258) 510
Leickman, J.C.      220(92—93) 425
Leigh, J.A.      117(43) 196
Lekkerkerkeer, H.      59(34) 61(37) 68(73) 109—110
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå