|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109 |
|
|
Ïðåäìåòíûé óêàçàòåëü |
bifurcation, slow, viscous liquids, orientation relaxation in 303—304
Ab initio calculations, intramolecular properties of liquid crystals 100—107
Ab initio calculations, intramolecular properties of liquid crystals, electronic structure 101—104
Ab initio calculations, intramolecular properties of liquid crystals, molecular flexibility 104—105
Ab initio calculations, intramolecular properties of liquid crystals, motivation 100
Ab initio calculations, intramolecular properties of liquid crystals, shape-dependent electronic structure 105—107
Ab initio calculations, supercritical water analysis, microscopic simulations 156—160
Ab initio calculations, supercritical water analysis, neutron diffraction with isotope substitution (NDIS) 124—129
Abseher, R. 170(278) 203
Acetone, ion solvation dynamics in 320—322
Acetonitrile, ion solvation dynamics 318—320
Ackemann, T. 463(164) 494(297) 495(164 299) 507 511
Ackland, G.J. 101(177) 102—103(182) 112—113
Acrivos, A. 235(172—173) 254—255(201) 259(201) 317(201) 427—428
Adam, C.J. 101(177—178) 105(178) 112
Adelman, S.A. 240(187) 335(280) 343(280) 428 431
Afanas’ev, A.A. 495(300) 511
Affouard, E. 82(134) 111
Aftereffect function, linear systems theory 17—19
Agladze, K. 445(63—64) 447(64) 448(63—64) 472(64) 477(63—64) 480(63—64) 485(64) 487(64) 493(64) 501(63) 504
Ahlers, G. 447(110) 480(259) 487(284) 495(305) 497(305) 506 510—511
Ahlstroem, P. 133(150) 135(150) 137(150) 139(150) 142(150) 199
Alavi, D.S. 280(244) 430
Alcohols see "Monohydroxy alcohols"
Alexander, S. 473(224) 509
Alfano, J. 220(84) 425
Allen, M.P. 59(33) 62(43—49) 63(50 53) 66(62—63) 67(70—71) 68(71 78—79) 69(49—50 78—79) 82(131—133) 109—111
Allen, P.B. 102—103(181) 112
Allin, S.M. 116(11) 194
Almirante, C. 89(147) 111
Alstrom, P. 454(143) 500(143) 507
Ambient conditions, ab initio simulations of supercritical water 158—160
Ambient conditions, microscopic behavior of supercritical water, hydrogen bonding 149—150
Ambient conditions, supercritical water analysis, microscopic behavior models 141—143
Amin, S.I. 116(13) 195
Amis, E.S. 116(8) 179(8) 194
Ammelt, E. 463(165—166) 507
Amplitude equations, pattern selection theory, degeneracies 455
Amplitude equations, pattern selection theory, reaction-diffusion models vs. 455—456
Amplitude equations, pattern selection theory, weakly nonlinear analysis 453
Amplitude equations, three-dimensional pattern selection 473—476
Amplitude equations, Turing — Hopf interaction 480—488
Anchoring free energy, Gay — Berne liquid crystal model 70—71
Andelman, D. 437(25) 503
Andersen, H.C. 138—139(181) 200 260(213) 338(260) 419(260) 429
Anderson, D.M. 238(238) 509
Anderson, J. 133(155) 199
Anderson, J.C. 12(20) 36
Andersson, S. 477(242) 479(242) 509
Angell, C.A. 301(256) 430
Anionic conductivities, ionic conductivity limits, monohydroxy alcohols 400—401
Anisotropic interactions, liquid crystal molecules, bulk material properties 68—70
Anisotropic interactions, liquid crystal molecules, confined geometries and interactions 70—71
Anisotropic interactions, liquid crystal molecules, Gay — Berne model 63—65
Anisotropic interactions, liquid crystal molecules, phase behavior 65—68
Anisotropic interactions, Turing pattern research and 501—502
Anisotropy-energy barrier, zero-frequency polarizabilities, fixed, spherical, single-domain particle 23—26
Antal, M.J. 116(12) 195
Antonetti, A. 220(80 82—83) 263(80) 265(82) 274(82) 425
Appenzeller, T. 162(244) 202
Appleby, M.P. 416(348) 433
Aqueous solutions, ionic conductivity limits, ion-dipole correlation function calculations 385
Aqueous solutions, ionic conductivity limits, origin of temperature dependence and 388—389
Aqueous solutions, ionic conductivity limits, solvent isotope effect in heavy water 389—390
Aqueous solutions, ionic conductivity limits, temperature dependence and solvent isotope effects 380—392
Aqueous solutions, ionic conductivity limits, temperature dependence in water 386—388
Aqueous solutions, ionic conductivity limits, wavenumber- and frequency- dependent solvent polarization relaxation rate 385—386
Aqueous solutions, properties of 117
Aqueous solutions, solvation formalism 183—192
Aqueous solutions, solvation formalism, kinetic rate constants 187—192
Aqueous solutions, solvation formalism, thermodynamics 183—187
Aqueous solutions, supercritical aqueous solutions, intermolecular potentials, infinite dilute solutions 164—182
Aqueous solutions, supercritical aqueous solutions, intermolecular potentials, infinite dilute solutions, ion speciation in high-temperature electrolyte solutions 173—177
Aqueous solutions, supercritical aqueous solutions, intermolecular potentials, infinite dilute solutions, solvent properties in ion vicinities 177—178
Aqueous solutions, supercritical aqueous solutions, molecular simulations 164—182
Aqueous solutions, supercritical aqueous solutions, physical chemistry of 161—162
Aqueous solutions, supercritical aqueous solutions, solute solvation in 161—163
Aqvist, J. 172(292) 203
Aragon, J.L. 467(184) 508
Archer, D.G. 163(251) 173(299) 202—203
Ardes, M. 439(38) 504
Arecchi, F.T. 454(145) 500(145 340) 507 512
Arimoto, S. 458(157) 498(157) 507
Arkin, A.P. 438(29) 503
Armbruster, D. 480(255) 510
Armellini, F.J. 116(19) 163(19) 174(305) 195 203
Arneodo, A. 480(257) 510
Arnold, H. 42(3) 108
Aromatic hydrocarbons, calamatic liquid crystal structure 46—48
Asai, R. 467(187) 508
Asakura, K. 467(183) 508
Aseltine, J.A. 16(27) 37
Assenheimer, M. 497(312) 511
Astrov, Y. 463(165—166) 507
Atkins, P.W. 223—224(127) 363—365(127) 367(127) 378(127) 381(127) 397(127) 415(217) 426
Atom-atom potential, liquid crystal, molecular models, translational diffusion 86—89
Atomic orbitals, electronic structure of liquid crystals 102—103
Attard, G.S. 48(9) 108
Auchmuty, J.F. 447(97) 457(97) 505
Autocorrelation function, fluctuation theory 19—20
Autocorrelation function, frequency-dependent longitudinal polarizability 26—27
Autocorrelation function, magnetic fluid frequency-dependent susceptibility 28—30
Autocorrelation function, reorientational motion, liquid crystal molecules 94—97
Averbach, R.A. 220(77) 425
Ayton, G. 76(112) 111
Babloyantz, A. 436(15) 503
Bachelet, G. 102(187) 113
Bachhuber, K. 266(230) 285(230) 290(285) 305(285) 307(285) 429
Bader, J.S. 275(151) 278(151) 315—316(151) 353—354(292) 427 431
Baer, M. 501(357) 512
Bagchi, B. 94(165—166) 112 211(6 15 15a 16—17) 213(23a) 214(15 15a) 216(41—43) 217(51) 218(42—43 63) 219(72) 220(76) 221(94 105) 223(23a) 224(15 15a) 227(15a 140—142) 228—229(15a) 231—232(15a 159—165) 236—238(15 15a) 239(15 15a 180) 240(15 15a 141) 241(15 15a) 242(159—166) 243(15 15a 189) 244(15 15a) 245(159—165) 246(15 15a 51 63 195) 247(15 15a 41 196—197) 249(198) 250(159—164 195 209) 251(15 15a 202) 252(159—164 202) 253(15 15a 204) 256(159 162 195 207—208) 257(15 15a) 258(15) 259(165—166 209) 262—263(197) 266(15 15a) 267(162—163) 272(160) 274(63 160 163) 277(43 51 63) 278(197 202 204 208) 280(159—162 164 195) 292(15 15a 162) 294(105) 295(150 249—252) 298(197) 302(15) 303(15 15a 165—166) 313(208) 315(15 15a 159—164 195 202 208) 316(159) 318—319(159) 324(15 15a 159—164) 325(43) 327(272) 328(15 15a 159—164 208 273) 331(161 163) 333—334(105) 335(105 249—252) 336(105 208) 338(105) 339(249—252) 346—347(249—252) 356—359(23a) 360(23a 249—252) 362(23a) 364(249—252) 365(303) 366(159—164 303 307) 367(249—252) 369(307) 370(249—252 307) 371(249—252 310—312) 372(15 15a) 373—374(310—312) 378(166) 382(307) 383(303 310—312) 392(208 249 252 310 312) 400(310) 401(319—320) 402(249—252 319) 404(303) 405(249—252 310—312) 410(15 15a 43 63) 412—413(342) 414(17 72 208) 415(72 344) 416(349) 419—420(249—252) 421(250—252) 422—433
Baier, G. 485(282) 510
Bajaj, K.M.S. 463(159) 507
Bak, P. 486—487(283) 510
Bakshiev, N.G. 216(39) 229(146) 246(39) 277(39) 423 427
Balbuena, P.B. 171(280—281 283) 172(288—290) 203 417(350) 433
Balucani, U. 236(175) 243(175) 248(175) 251(175) 295(175) 339(175) 364(175) 367(175) 370(175) 374(175) 402(322) 405(322) 419—421(175) 428 432
Baranyai, A. 160(212) 201
Baras, F. 436(4) 503
Barbara, P.E. 211(12) 217(50 53) 220(84—85) 221(85) 229(50 147—149) 246(12 50 53) 263(12) 274(85) 277(50 53) 278(148) 422 424—425 427
Barbero, G. 77(114) 111
Barner, H.E. 116(37) 195
Barnett, R.N. 274(240) 374(240) 429
Barra, F. 487(288) 510
Barrat, J.-L. 133(165) 199
Barrio, R.A. 467(184) 508
Bartels, C. 478(245) 509
Barthel, J. 266(230—231) 285(230) 290(230) 305(230—231) 307(230—231) 310(231) 429
Bash, P.A. 172(293) 203
Bass, J.D. 119(74 79) 152(74) 154(193) 197 200 329(275) 431
Bates, F.S. 408(313) 511
Bates, M. 67(69) 68(77) 70(90) 77(116) 109—111
Battino, R. 163(245—246) 202
Battogtokh, D. 502(382) 513
Baus, M. 239(182) 428
Bearman, R.J. 240(187) 259(187) 428
Becerril, R. 480(256) 495(256) 510
Becke, A.D. 156(204) 200
Becker — Doring — Zeldovich (B-D-Z) model, supercritical water (SCW), ion solvation dynamics 332—333
Becker, D.D. 332(277) 431
Beisbarth, H. 162(243) 202
Bellemans, A. 85(138) 111
Bellissent-Funel, M.-C. 119(77) 128(77) 146(77) 154(77) 161(77) 197
Bellows, J.C. 160(214) 201
Belonshko, A. 165(264—265) 202
Belousov — Zhabotinskii reaction, spatial patterns 499—502
Bemrose, R. 67—68(72) 110
Ben-Jacob, E. 447(107) 466(171) 506—507
Ben-Naim, A. 129(120) 160(233) 183(324) 198 201 204
Bend deformations, liquid crystal elasticity and velocity 55—59
| Benegas, J.C. 442(51) 504
Bengel, G. 439(37) 495(37) 504
Benigno, A. 222(100) 294(100) 334(100) 425
Benjamin — Feir instability, steady-Hopf mode interactions 483—488
Bennett, G.E. 171(282) 172(288) 203
Bensimon, D. 466(169) 486(169) 507
Berardi, R. 64(64) 68(76) 75(108) 109
Berendsen, H.J.C. 120(100) 129(119) 130(119) 131(100 119) 132(119) 133(167) 170(267) 171(100) 172(119) 197—199 202
Berg, M. 222(95—103 110) 294(95—103) 334(95—103 279) 335(110) 425 431
Berge, L.I. 495(305) 497(305) 511
Berkovec, M. 211(9) 213(25) 422—423
Berkowitz, M. 369(309) 432
Bernardo, D.N. 138(177—178) 139(178) 200
Bernasconi, G.P. 501(367) 513
Berne, B.J. 64—65(56) 93(155) 109 112 133(152 159) 135(152) 199 213(25) 244(190—191) 344(288) 345(288 288a) 350(288 288a) 351(288a) 353—354(292) 423 428 431
Bertolini, D. 265—267(222) 429
Berwenger, C.D. 129(128) 131(128) 140(128) 143(128) 198
Bessel function, rotational dissipative kernel, single particle limit 243—244
Bestehorn, M. 447(105) 466(182) 469(182) 471(182 214 219) 480(105) 501(364) 506 508—509 513
Beutier, D. 163(247) 202
Beveridge, D.L. 118(57) 119(57 64) 130(57) 148(64) 150—151(64) 153(64) 170(279) 196 202
Beysens, D. 119(77) 128(77) 146(77) 154(77) 161(77) 197
Bhattacharjee, S. 407—408(333) 432
Bhattacharya, D.K. 133(157) 199
Bhattacharyya, K. 441(336—337) 432
Bhattacharyya, S. 213(23a) 223(23a) 295(249—252) 327(272) 335(249—252) 339(249—252) 346—347(249—252) 356—359(23a) 360(23a 249—252) 362(23a) 364(249—252) 367(249—252) 370—371(249—252) 392(249—252) 402(249—252) 419—420(249—252) 421(250—252) 423 430—431
Biaxiality, liquid crystal molecules 41—42
Biaxiality, liquid crystal molecules, phase diagrams 62
Biaxiality, molecular flexibility in liquid crystals and 80
Biemann, K. 116(16) 163(16) 195
Bifurcation diagrams, pattern selection theory, weakly nonlinear analysis 451—453
Bifurcation diagrams, steady-Hopf mode interactions, mixed modes 484—486
Bifurcation diagrams, three-dimensional pattern selection 472—476
Bifurcation diagrams, Turing instability, research background 440—441
Bifurcation diagrams, Turing — Hopf interactions, genericity 491—492
Bifurcation diagrams, Turing — Hopf interactions, subharmonic instabilities 488—490
Bifurcation diagrams, two-dimensional spatial patterns 458—464
Bifurcation diagrams, two-dimensional spatial patterns, re-entrant hexagons 464—465
Bimodal friction, vibrational phase relaxation (VPR) and 355—363
Bimodal friction, vibrational phase relaxation (VPR) and, force-force time correlation function (FFTCF) 360—362
Bimodal friction, vibrational phase relaxation (VPR) and, gas-liquid criticality 363
Bimodal friction, vibrational phase relaxation (VPR) and, Kubo — Oxtoby theory 357—360
Bimodal friction, vibrational phase relaxation (VPR) and, subquadratic quantum number dependence 362—363
Binary collision, ionic conductivity limits, electrolyte solutions, local friction calculation 370—371
Binary collision, vibrational energy relaxation (VER), frequency-dependent friction calculation 345—349
Binary collision, vibrational energy relaxation (VER), microscopic expression for 346—349
Binary dynamics, ultrafast polar solvation, continuum model of 327
Binary dynamics, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids 334—343
Binary dynamics, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, energy-energy correlation function 337—340
Binary dynamics, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, Gaussian time constant 342—343
Binary dynamics, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, mode-coupling theory (MCT) 338—340
Binary dynamics, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, solute-solvent two-particle binary dynamics 340—342
Binary dynamics, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, theoretical background 334—337
Binary mixtures, dielectric relaxation and solvation dynamics 414—415
Bingemann, D. 219(65) 230(65) 246(65) 277—280(65) 285(65) 291(65) 295(65) 297(65) 364(65) 392(65) 414(65) 424
Binger, D. 99(176) 112
Biological water, solvation dynamics and dielectric relaxation in 411—413
Biphasic frictional response, vibrational energy relaxation (VER) and 350—353
Biphasic solvent response, research background 212—213
Birch, G.G. 160(229—230) 201
Birch, R. 265—266(221) 276(221) 429
Biscarini, E. 71(94) 110
Bistability regimes, spatial patterns 495—499
Bistability regimes, spatial patterns, morphologic instabilities 498—499
Bistability regimes, spatial patterns, zero mode 495—498
Bistability regimes, Turing — Hopf interaction, localized structures and 486—488
Bistability regimes, Turing — Hopf interaction, two-dimensional spatiotemporal dynamics 493—495
Biswas, R. 221(94) 231—232(163a) 242(163a) 245(163a) 247(195) 250(163a 195) 251(202) 252(163a 202) 253(204) 256(195 208) 267(163a) 274(163a) 278(202 204 208) 280(195) 313(208 265) 315(163a 195 202 208) 324(163a) 325(265) 327(272) 328(163a 208 273) 336(208) 365(303) 366(163a 303) 371(310—312) 373—374(310—312) 383(303 310—312) 392(208 310 312) 400(310) 404(303) 405(310—312) 414(208) 415(344) 416(349) 425 427—428 430—433
Bittner, E.R. 220(90) 425
Bizon, C. 463(160) 507
Blanc, M.L. 162(242) 202
Blanchedeau, P. 445—446(80) 457(80) 466(80) 498(80) 505
Blanket, L.D. 259(210) 429
Block, J.H. 502(383) 513
Blocked magnetic moment, uniaxial magnetic anisotropy 3
Bluff, F.P. 185(332) 204
Blum, L. 158(211) 160(211) 201
Boccaletti, S. 500(340) 512
Boccio, J.R. 117(41) 171(41) 179(41) 181(41) 196
Bockris, J.M. 181(319) 204 223—224(127) 363—365(127) 367(127) 378(127) 381(127) 397(127) 415(217) 426
Bode, M. 480(265) 488(265) 510
Body-centered cubic (BCC) structure, three-dimensional pattern, selection 474—476
Boettcher, C.J.E. 136(175) 199 310—311(263) 430
Bohr, T. 486—487(283) 510
Boissonade, J. 441(46—49) 442(49 52) 445(48 72 81) 446(48 81 86—87) 447(47 52 81 98 104) 449(48 98) 457(48 86—87 104) 463(48 86) 464(86) 465(48) 468(87) 469(86) 471(47—48 86) 472(48 72 98) 477(48 72 104) 480(48 104) 486(98) 493(48 98) 494(48) 497(86) 501(48 367) 504—506 513
Bolhuis, P. 61(42) 63(52) 73(42) 109
Boltzmann distribution, blocked magnetic moment 3
Boltzmann distribution, zero-frequency polarizabilities, fixed, spherical, single-domain particle 24—26
Boltzmann’s constant, microscopic solvation dynamics, Non-Markovian solvent inertia and underdamping 231—233
Boltzmann’s constant, supercritical aqueous solutions, kinetic rate constants, solvation effects on 188—192
Boltzmann’s constant, supercritical aqueous solutions, solvation thermodynamics 184—187
Bondarenko, G.V. 119(84) 197
Boon, J.-R. 237(177) 243—244(177) 252(177) 295(177) 428 469(194 196) 508
Bopp — Jancso — Heinzinger (BHJ) water model, supercritical water analysis, hydrogen bonding 154—156
Bopp — Jancso — Heinzinger (BHJ) water model, supercritical water analysis, microscopic behavior 133—135
Bopp, P. 84—85(136) 90(136) 111 133—135(140) 199
Borckmans, R. 436(8) 438(27) 439(8) 445(75 79 83—85 88) 447(85 98—100 102 112 117—118) 449(98 118—121) 454(79) 456(88 100 120—121 148—149) 457(75 79 88 99—100 119—121 149 152) 461(84) 463—464(84 120) 465(88 99 120) 466(79 88 120 178) 467(85 120) 469(85) 472(98) 473(79 117 222) 475(75 117 222 225) 476(79 117 222) 477(102 117) 479(117) 480(118) 483(271) 484(119 271) 486(79 88 98 118—120) 487(119) 488(118—120) 489(119 291 293) 490(119 294) 491(291) 493(98 100 119—121) 494(271) 495(27 119 121 225 293 307—309) 496(310) 497(27 84 99) 498(293 307—309) 499(117 299) 501(79 85 358—359 368) 503 505—513
Bordewijk, P. 310—311(263) 430
Borgis, D. 220(91 93) 425
Borkovek, M. 345(288a) 350—351(288a) 431
Born equation, ionic conductivity limits, aqueous solutions 381—384
Born equation, ionic conductivity limits, electrolyte solutions 365—371
Born equation, supercritical aqueous solutions, ion speciation and limits of 180—182
Born equation, supercritical aqueous solutions, kinetic rate constants, solvation effects on 187—192
Born — Oppenheimer approximation, ab initio simulations of supercritical water 156—160
Born, M. 216(44) 277(44) 365(298) 381(298) 424 431
Borzi, C. 467(185 188) 508
Bose, I. 500(350) 512
Bose, S. 480(266) 490(266 278 295) 491(278) 495(295) 510—511
Bose, T.R. 79(122) 111
Bosse, J. 213(26b) 227(26b) 236—237(26b) 248(26b) 335(26b) 345(26b) 360(26b) 364(26b) 367(26b) 374(26b) 404(26b) 419—420(26b) 423
Boulougouris, G.C. 131(136) 198
Bout, D.V. 222(101—103) 294(101—103) 334(101—103) 425
Bowman, C. 469(197—198) 508
Boyd, R.H. 365(299) 431
Boyd, R.J. 133(141) 135(141) 138(141) 142(141) 199
Bradshaw, A.M. 502(382) 513
Brady, J.W. 160(227) 201
Brand, H. 447(107) 466(171) 471(220—221) 472(221) 480(254) 500(348) 501(360) 506—507 509—510 512
Bratos, S. 220(92—93) 425
Brawer, S. 303(260) 430
Brearly, A.M. 217(53) 246(53) 277(53) 424
Breazeal, W. 495(304) 497(304) 511
Breene, R.G. 6(14) 36
Brennecke, J.E. 189(340) 192(343) 204—205
Brickmann, J. 84—85(136) 90(136 150—151) 111—112 119(78) 197
Brill, T.B. 116(9) 194
Broadwater, R. 416(345) 433
Brock, E.E. 116(21) 195
Brodholt, J. 133(142) 135(173) 140(173) 142(173) 155(194) 199—200
Brodka, A. 75(111) 111
Brons, M. 447(103) 505
Brown, E.V. 126(114) 198
Brown, J.T. 64(62—63) 109
Brown, W.F. 28(39) 37
Brownian motion, blocked magnetic moment 3
Brownian motion, magnetic fluid frequency-dependent susceptibility 28—30
Brownian oscillator model, microscopic solvation dynamics 233—235
Bruni, F. 119(76) 154(76) 155(76 194) 158—160(76) 197 200
Brunne, R.M. 133(163) 140(163) 199
Bruno, T.J. 173(300) 203
Bruno, W.J. 444(61) 480(61) 504
Brusselator model, steady-Hopf mode interactions, bistability 486—488
Brusselator model, steady-Hopf mode interactions, mixed mode 484—486
Brusselator model, three-dimensional pattern selection 475—476
Brusselator model, three-dimensional pattern selection and, minimal surfaces 477—480
Brusselator model, Turing pattern in, reaction-diffusion equations 457—458
Brusselator model, Turing — Hopf interaction, genericity 491—492
Brusselator model, Turing — Hopf interaction, subharmonic instabilities 489—490
Brusselator model, Turing — Hopf interaction, two-dimensional spatiotemporal dynamics 493—495
|
|
|
Ðåêëàìà |
|
|
|