Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in Chemical Physics. Volume 109

Àâòîðû: Prigogine I. (ed.), Rice S.A. (ed.)

Àííîòàöèÿ:

Volume 109 in the prestigious Advances in Chemical Physics Series, edited by Nobel Prize winner Ilya Prigogine, and renowned authority Stuart A. Rice, continues to report recent advances in every area of the discipline. Significant, up-to-date chapters by internationally recognized researchers present comprehensive analyses of subjects of interest and encourage the expression of individual points of view. This approach to presenting an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in the field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 582

Äîáàâëåíà â êàòàëîã: 22.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Suschik, M.M.      471(213) 509
Sutin, N.      211(11) 297(11) 422
Svishchev, I.M.      119(80) 133(141) 135(141 174) 138(141 174) 142(141 174) 197 199 272(239) 429
Svomoda, I.      104(192) 113
Swallow, K.C.      116(17 20) 163(17 20) 195
Swaminathan, S.      118(57) 119(57) 130(57) 196
Swanson, B.      63(54) 109
Swift — Hohenberg model of spatial patterns, research background      450—451
Swift — Hohenberg model of spatial patterns, Turing pattern research      457—458
Swift, J.      451(139) 457(139) 463(160) 480(253 256) 495(256) 507 510
Swinney, H.L.      439(36) 441(44—45) 442(53) 445(53 62 65—68) 446(53 67—68 89—91) 447(94) 450(129—131 136—138) 457(90) 463(91 160—161) 464(66) 466(91) 471(66 90—91) 472(89—90) 477(68 91) 480(68 90) 495(129—131) 497(161) 498(129—131 136—138) 499(138) 501(374) 502(129) 504—507 513
Synowiec, J.A.      220(77) 425
Szili, L.      439(35) 504
Takagi, K.      93(159) 112
Talkner, T.      211(9) 422
Tam, W.Y.      441(44—45) 504
Tamm, K.      174(307) 203
Tanaka, H.      264(215—216) 429
Tang, S.      62(49) 63(51) 69(49) 109
Tani, A.      265—267(222) 429
Tassaing, T.      119(77) 128(77) 146(77) 154(77) 161(77) 197
Teeter, M.M.      411—412(339) 433
Teixeira, J.      155(196) 200
Teixeira, P.      69(81) 75(107) 110
Teleman, O.      129—130(126) 133(126 161) 134(126) 153(126) 198—199
Teller, E.      213(24) 223(24) 344(24) 423
Tembe, B.L.      323(271a) 430
Temme, E.      59(31) 72(96) 109—110
Temperature dependence, ionic conductivity limits, aqueous solutions      380—392
Temperature dependence, ionic conductivity limits, aqueous solutions, origins of      388—389
Temperature dependence, ionic conductivity limits, aqueous solutions, water conductivity limits      386—388
Temperature dependence, liquid crystal elasticity and velocity      57—59
Temperature dependence, supercritical aqueous solutions, intermolecular potentials      164—173
Teperick, S.      463(165) 507
Tester, J.W.      116(19 35) 163(19) 174(305) 195 203
Tetsuka, A.      498(322) 511
Theodorou, D.N.      131(136) 198
Thermodynamic free energy perturbation, supercritical aqueous solutions, intermolecular potentials      170—173
Thermotropic liquid crystals, characteristics of      42—43
Thermotropic transitions, anisotropic attractive interactions, Gay — Berne liquid crystal model      63—65
Thiele, E.      240(185) 428
Thiessen, W.E.      158(211) 160(211) 201
Thirumalai, D.      94(164) 112
Thole, B.T.      138(176) 200
Thomas, E.L.      477(238 241) 509
Thomason, T.B.      116(17—18) 163(17) 195
Thompson, P.      117(41) 171(41) 179(41) 181(41) 196
Three pulse photon echo peak shift (3PEPS), monohydroxy alcohols, ionic/dipolar solvation dynamics      279—281
Three pulse photon echo peak shift (3PEPS), monohydroxy alcohols, nonpolar solvation dynamics      293—297
Three pulse photon echo peak shift (3PEPS), nonpolar solvation dynamics      222
Three pulse photon echo peak shift (3PEPS), polar solvation dynamics, solvent time correlation function      214—216
Three-dimensional pattern selection, Turing spatial patterns      472—480
Three-dimensional pattern selection, Turing spatial patterns, bifurcation diagrams      472—476
Three-dimensional pattern selection, Turing spatial patterns, minimal surfaces      477—480
Three-dimensional spatial patterns, Turing pattern analysis of      447
Thual, O.      466(175) 480(257) 487(175) 508 510
Tildesley, D.J.      97(174) 99(174) 112
Time-dependent fluorescence (TDF), microscopic solvation dynamics, Brownian oscillator model      233—235
Time-dependent fluorescence Stokes shift (TDFSS), ion solvation dynamics      252—253
Time-dependent fluorescence Stokes shift (TDFSS), monohydroxy alcohols, ion and dipolar solvation dynamics      281—282
Time-dependent fluorescence Stokes shift (TDFSS), polar solvation dynamics, experimental protocols for      217—218
Time-dependent fluorescence Stokes shift (TDFSS), polar solvation dynamics, solvent time correlation function      213—216
Time-dependent mean field (TDMF), theory, ionic conductivity limits, electrolyte solutions      372—374
Timini, B.      67(68) 109
TIP4P water model, microscopic behavior of supercritical water      132
TIP4P water model, microscopic behavior of supercritical water, hydrogen bonding      147 153—156
TIP4P water model, solvation dynamics in water, rotational dissipative kernel calculations      267—268
Tirapegui, E.      469(201) 487(288) 508 510
Tironi, I.G.      133(163) 140(163) 199
TJE water model, supercritical water, analysis, microscopic behavior      133
Tkachenko, A.      78(119) 111
Tlidi, M.      480(267—268) 484(268) 491(267—268) 499(267) 510
Toedheide, K.      116(30) 195
Tomes, A.      50(15) 108
Tominaga, K.      211(23) 213(23) 229(149) 265(229) 275(229) 357(23) 362(23) 365—366(301) 383(301) 394(301) 401(301) 423 427 429 431
Toner, J.      477(235) 496(235) 509
Topp, M.R.      217(47) 246(47) 277(47) 424
Toriumi, H.      84(135) 111
Torque-torque correlation function, wavenumber-dependent orientational self-dynamic structure factor      259—260
Torre, R.      92(153) 94(160) 112
Torry, L.A.      117(39) 195
Torsional potential, molecular flexibility, liquid crystals      79—80
Tosi, M.P.      173(302—303) 203
Total correlation function integrals (TCFI), supercritical aqueous solutions, solvation thermodynamics      185—187
Total energy-energy time correlation function, monohydroxy alcohols, ion and dipolar solvation dynamics      281—282
Toth, G.      160(212) 201
Toth, J.      439(35) 504
Toukan, K.      133(153) 199
Townsend, S.H.      116(32) 195
Tramp, R.H.      118(60) 119(60) 120(60 98) 124(60 98) 125(60) 127—129(60) 143(60) 143(60) 153(60) 157(60) 158(60) 160(60) 196—197
Tranfield, R.      67(66) 109
Transient hole burning measurements, acetonitrile solvation dynamics      319—320
Transient hole burning measurements, nonpolar solvation dynamics      222
Transient hole burning measurements, nonpolar solvation dynamics, ultrafast response in dense liquids      334—343
Transition metal complexes, calamatic liquid crystal structure      48
Transition state theory (TST), supercritical aqueous solutions, kinetic rate constants, solvation effects on      187—192
Translational diffusion, liquid crystal molecular models      86—89
Translational dissipative kernel, calculation of      246
Translational dissipative kernel, solvation dynamics in water, calculation of      268
Translational frictional kernel, ionic conductivity limits, concentration dependence      415
Translational frictional kernel, ionic conductivity limits, electrolyte solutions      375—378
Translational memory kernel, nonassociated polar solvation dynamics      317
Translational molecular order, liquid crystals      40—42
Translational self-diffusion coefficient, liquid crystal hard sphere model      63—64
Transverse current term, vibrational energy relaxation (VER), frequency-dependent friction calculation      345—349
Transverse polarizability, frequency dependence      27—28
Trebin, H.      68(80) 70—71(93) 110
Tribelsky, M.I.      454(142 146) 466—467(170) 469(170) 486(170) 500(342) 507 512
Tsimring, L.S.      469(200 202) 471(213) 496(311) 508—509 511
Tsuzuki, T.      457(154) 507
Tucker, S.C.      160(219) 187(333—337) 188(219) 201 204
Tuckerman, M.      133(159) 199
Tuckerman, M.E.      213(25) 344—345(288) 350(288) 423 431
Turing instability, spatial patterns, research background      436—441
Turing instability, steady-Hopf mode interactions      481—488
Turing patterns      456—480
Turing patterns, chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, gel and color indicator, role of      442—445
Turing patterns, chlorite-iodide-malonic acid (CIMA) system, experimental protocols for      441—450
Turing patterns, new systems, analysis of      449—450
Turing patterns, pattern selection theory, degeneracies      454—455
Turing patterns, ramps and dimensionality parameters      446—447
Turing patterns, reaction diffusion models      456—458
Turing patterns, research background      436—438
Turing patterns, three-dimensional pattern selection      447 472—480
Turing patterns, three-dimensional pattern selection, bifurcation diagrams      472—476
Turing patterns, three-dimensional pattern selection, minimal surfaces      477—480
Turing patterns, Turing patterns, two-dimensional pattern selection      458—472
Turing patterns, Turing patterns, two-dimensional pattern selection, boundaries      467—469
Turing patterns, Turing patterns, two-dimensional pattern selection, experiments using      445—446
Turing patterns, Turing patterns, two-dimensional pattern selection, long-wavelength instabilities and phase equations      469—472
Turing patterns, Turing patterns, two-dimensional pattern selection, re-entrant hexagons      464—465
Turing patterns, Turing patterns, two-dimensional pattern selection, standard bifurcation diagram      458—464
Turing patterns, Turing patterns, two-dimensional pattern selection, subcritical localized structures      465—467
Turing patterns, Turing — Hopf interaction, experimental protocols      447—449
Turing stability, pattern selection theory and      451
Turing — Hopf interaction, experimental protocols      447—449
Turing — Hopf interaction, reaction-diffusion models      456—458
Turing — Hopf interaction, spatial patterns      480—495
Turing — Hopf interaction, spatial patterns, genericity      491—492
Turing — Hopf interaction, spatial patterns, steady-Hopf mode interactions      481—488
Turing — Hopf interaction, spatial patterns, steady-Hopf mode interactions, bistability and localized structures      486—488
Turing — Hopf interaction, spatial patterns, steady-Hopf mode interactions, mixed modes      484—486
Turing — Hopf interaction, subharmonic instabilities      488—490
Turing — Hopf interaction, two-dimensional spatiotemporal dynamics      493—495
Turing, A.      436(1) 438—439(1) 503
Twist elastic constants, liquid crystal elasticity and velocity      55—57
Two-dimensional spatial patterns, spatiotemporal dynamics      493—495
Two-dimensional spatial patterns, Turing pattern experiments with      445—446
Two-dimensional spatial patterns, Turing pattern experiments with, boundaries      467—469
Two-dimensional spatial patterns, Turing pattern experiments with, long-wavelength instabilities and phase equations      469—472
Two-dimensional spatial patterns, Turing pattern experiments with, re-entrant hexagons      464—465
Two-dimensional spatial patterns, Turing pattern experiments with, standard bifurcation diagram      458—464
Two-dimensional spatial patterns, Turing pattern experiments with, subcritical localized structures      465—467
Ueno, T.      93(159) 112
Ullo, J.J.      133(155) 199
Ultrafast femtosecond spectrosopy, liquid crystal molecules, reorientational motion      93—97
Ultrafast laser spectroscopy, liquid transport analysis and      212—213
Ultrafast polar solvation, collective vs.single particle motion      298—301
Ultrafast polar solvation, continuum model      323—329
Ultrafast polar solvation, continuum model, extended molecular hydrodynamic theory and      324—326
Ultrafast polar solvation, continuum model, instantaneous normal mode technique      326—327
Ultrafast polar solvation, continuum model, polar/nonpolar solvent response competition      328
Ultrafast polar solvation, continuum model, validity of, research on      328—329
Ultrafast polar solvation, monohydroxy alcohols, ionic/dipolar solvation dynamics      277—281
Ultrafast polar solvation, monohydroxy alcohols, nonpolar solvation dynamics      292—297
Ultrafast polar solvation, monohydroxy alcohols, research issues concerning      297—301
Ultrafast polar solvation, nonassociated polar solvents      315—323
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids      334—343
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, energy-energy correlation function      337—340
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, Gaussian time constant      342—343
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, mode-coupling theory (MCT)      338—340
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, solute-solvent two-particle binary dynamics      340—342
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, theoretical background      334—337
Ultrafast polar solvation, picosecond laser pulse experiments      218—219
Ultrafast solvation, electron transfer reactions, nonpolar solvent response      414
Umbanhowar, P.B.      463(161) 497(161) 507
Underdamped non-Markovian theory, microscopic solvation dynamics, solvent inertia      230—233
Underwood, I.      43(4) 108
Uniaxial ellipsoid revolution model, excluded volume liquid crystal interactions      60—61
Uniaxial magnetic anisotropy, defined      3
Uniaxial magnetic anisotropy, Landau — Lifshitz ferromagnetic resonance      10—16
Unit step-function, fluctuation theory      19
Urban, S.      50—51(17) 54(17) 93(154) 108 112
Vafek, O.      436(10) 503
Vaidya, D.      63(51) 109
Vajda, S.      409(335) 432
Vallauri, R.      127(116) 133(142) 135(173) 140(173) 142(173) 155(194) 198—200 402(322) 405(322) 432
Valletta, D.P.      480(263—264) 489(263—264) 510
van der Haegen, R.      68(73) 110
Van der Meulen, P.      219(64) 230(64) 246(64) 277(64) 278(64) 417(352) 420(64) 424 433
van der Zwan, G.      216(40) 233(40) 246(39) 247(40) 277(39—40) 325—326(40) 367(308) 407(329) 423 432
Van Dorp, J.H.      116(25) 195
Van Duijnen, P.T.      133(149) 135(149) 139(149) 199
van Duijnevelt, J.      63(53) 82(133) 109 111
van Gunsteren, W.F.      120(100) 129(128) 131(100 128) 133(163 167) 140(128 163) 143(128) 170(267) 171(100) 197—199 202
van Haeften, B.      467(185) 508
Van Hare, D.R.      163(250) 202
van Hove time correlation function, vibrational energy relaxation (VER) and, binary friction, microscopic expression of      347—349
van Rioj, R.      63(52) 109
Van Saarloos, W.      466(172—173 176) 484(277) 487(176) 507—508 510
Van Vleck — Weisskopf — Froelich absorption vs. Lorentz absorption      8—10
Van Vleck — Weisskopf — Froelich absorption, collision broadening and      8
Van Vleck — Weisskopf — Froelich absorption, comparison with other functions      31—34
Van Vleck — Weisskopf — Froelich absorption, step, aftereffect and pulse functions for      18—19
Van Vleck — Weisskopf — Froelich equation, variable forms for      34—35
van Vleck, J.H.      5(10) 8(10) 35(10) 36
Vanakaras, A.      72(99) 110
Vanbruggen, M.      59(34) 109
Vanderkooij, F.      59(34) 109
Vandershoot, A.      78(118) 111
Varea, C.      467(184) 508
Vasquez, D.A.      501(361—362) 513
Vass, D.G.      43(4) 108
Vass, H.      79(126) 102—103(183) 111 113
Vastano, J.A.      439(36) 441(45) 504
Vasu, T.      118(57) 119(57) 130(57) 196
Veermen.      61(39) 109
Vega, C.      72—74(100) 77(100) 110
Velarde, M.      500(342) 512
Venables, D.S.      316—317(268) 319—320(268) 430
Veracini, C.      53(19) 108
Verdasca, J.      438(27) 447(84) 461(84) 463—464(84) 495(27) 497(27 84) 503 505
Verlet, L.      260(212) 429
Verma, A.L.      80(128) 111
Vertex function, solute-solvent interaction      420—421
Vetrov, A.A.      119(85) 197
Vibrational energy relaxation (VER), binary interactions, ultrafast response in dense liquids      335—343
Vibrational energy relaxation (VER), research background on      211—213
Vibrational energy relaxation (VER), solvation dynamics and      223
Vibrational energy relaxation (VER), solvation dynamics and, frequency-dependent friction calculation      345—353
Vibrational energy relaxation (VER), solvation dynamics and, quantum effects at high frequency      353—355
Vibrational energy relaxation (VER), solvation dynamics and, theoretical background      343—345
Vibrational phase relaxation (VPR), solvation dynamics and, bimodal friction, nonclassical behavior and      355—363
Vibrational phase relaxation (VPR), solvation dynamics and, bimodal friction, nonclassical behavior and, Kubo — Oxtoby theory      357—360
Vibrational phase relaxation (VPR), solvation dynamics and, force-force time correlation function (FFTCF)      360—362
Vibrational phase relaxation (VPR), solvation dynamics and, gas-liquid criticality      363
Vibrational phase relaxation (VPR), solvation dynamics and, subquadratic quantum number dependence      362—363
Vibrational relaxation, solvation dynamics and      222—223
Vidal, C.      436(8) 439(8) 441(43) 499(43) 503—504
Vigil, R.D.      447(94) 505
Vijaydamodar, G.V.      250(209) 259(209) 401—402(319) 429 431
Vilfan, M.      70(87) 110
Viscosity parameters in glassy liquids, ion solvation dynamics      301—315
Viscosity parameters in glassy liquids, ion solvation dynamics, future research issues      313—315
Viscosity parameters in glassy liquids, ion solvation dynamics, ion-dipole direct correlation function      304
Viscosity parameters in glassy liquids, ion solvation dynamics, numerical results      305—313
Viscosity parameters in glassy liquids, ion solvation dynamics, orientational relaxation      303—304
Viscosity parameters in glassy liquids, ion solvation dynamics, solvent orientational polarization relaxation, generalized rate calculation      304—305
Viscosity parameters in glassy liquids, ion solvation dynamics, solvent static correlation functions      304
Viscosity parameters in glassy liquids, ion solvation dynamics, theoretical background      303—304
Viscosity parameters, dynamic structure factor calculations      419—420
Viscosity parameters, Gay — Berne liquid crystal model      69—70
Viscosity parameters, ionic conductivity limits, aqueous solutions, temperature dependence and      388—389
Viscosity parameters, liquid crystal structure and      55—59
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids      334—343
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, energy-energy correlation function      337—340
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, Gaussian time constant      342—343
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, mode-coupling theory (MCT)      338—340
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, solute-solvent two-particle binary dynamics      340—342
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, theoretical background      334—337
Volatile solute behavior, supercritical aqueous solutions, intermolecular potentials      166—173
von Oertzen, A.      487(287) 502(378) 510 513
Voroney, J.-P.      500(349) 512
Vorontsov, M.A.      500(341) 512
Vosnovskii, S.V.      6(17) 10(17) 36
Voth, G.A.      211(2) 224(2) 422
Wacker, A.      480(266) 490(266) 510
Wagner, A.      301(257) 430
Wakai, C.      117(53—54) 128(53—54) 196 329(274) 431
Wakita, H.      126(109) 158(109) 198
Walba, D.M.      80(127) 99(175) 111—112
Waldeck, D.H.      211(20) 224(20) 280(244) 423 430
Walden’s rule, ionic conductivity limits      224
Walden’s rule, ionic conductivity limits, electrolyte solutions      364—371
Walden’s rule, ionic conductivity limits, monohydroxy alcohols      392—398
Walden’s rule, ionic conductivity limits, monohydroxy alcohols, propanol      396—398
Waldron, R.A.      15(26) 36
Walen, S.L.      332(278) 431
Walgraef, D.      436(4 9) 438(9) 439(9 40) 445(75 79) 454(79) 457(9 75 79) 466(79) 469(9) 471(212) 473(79 222) 475(75 222) 476(79 222) 486(79) 493(9 296) 495(298) 501(79 358) 503—505 507 509 511—512
Walhout, P.K.      220(84—85) 221(85) 274(81) 425
Walker, G.C.      229(149) 427
Wallen, S.L.      179(313—314) 204
Wallqvist, A.      133(150 161) 135(150) 137(150) 139(150) 142(150) 199
Walmsley, S.      64(58) 109
Walrafen, G.E.      117—118(55) 120(55) 154(55) 196 269(236) 272(236) 429
Walsh, A.M.      222(106) 425
Walshaw, J.      160(232) 201
Walton, I.C.      447(109) 506
Wan, W.      369(309) 432
Wang, J.      133(141) 135(141) 138(141) 142(141) 199
Wang, Z.-G.      479(247) 509
Warren, M.A.      67(70) 68—69(79) 109—110
Warren, P.      59(32) 109
Warshel, A.      133(151) 135(151) 199
Water      see also "Heavy water" "Supercritical
Water, biological water, solvation dynamics and dielectric relaxation in      411—413
Water, ionic conductivity limits, water-alcohol mixtures      416
Water, properties of      116
Water, solvation dynamics in      263—277
Water, solvation dynamics in, deuterium isotope effect      268—269
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå