|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume 109 |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Suschik, M.M. 471(213) 509
Sutin, N. 211(11) 297(11) 422
Svishchev, I.M. 119(80) 133(141) 135(141 174) 138(141 174) 142(141 174) 197 199 272(239) 429
Svomoda, I. 104(192) 113
Swallow, K.C. 116(17 20) 163(17 20) 195
Swaminathan, S. 118(57) 119(57) 130(57) 196
Swanson, B. 63(54) 109
Swift — Hohenberg model of spatial patterns, research background 450—451
Swift — Hohenberg model of spatial patterns, Turing pattern research 457—458
Swift, J. 451(139) 457(139) 463(160) 480(253 256) 495(256) 507 510
Swinney, H.L. 439(36) 441(44—45) 442(53) 445(53 62 65—68) 446(53 67—68 89—91) 447(94) 450(129—131 136—138) 457(90) 463(91 160—161) 464(66) 466(91) 471(66 90—91) 472(89—90) 477(68 91) 480(68 90) 495(129—131) 497(161) 498(129—131 136—138) 499(138) 501(374) 502(129) 504—507 513
Synowiec, J.A. 220(77) 425
Szili, L. 439(35) 504
Takagi, K. 93(159) 112
Talkner, T. 211(9) 422
Tam, W.Y. 441(44—45) 504
Tamm, K. 174(307) 203
Tanaka, H. 264(215—216) 429
Tang, S. 62(49) 63(51) 69(49) 109
Tani, A. 265—267(222) 429
Tassaing, T. 119(77) 128(77) 146(77) 154(77) 161(77) 197
Teeter, M.M. 411—412(339) 433
Teixeira, J. 155(196) 200
Teixeira, P. 69(81) 75(107) 110
Teleman, O. 129—130(126) 133(126 161) 134(126) 153(126) 198—199
Teller, E. 213(24) 223(24) 344(24) 423
Tembe, B.L. 323(271a) 430
Temme, E. 59(31) 72(96) 109—110
Temperature dependence, ionic conductivity limits, aqueous solutions 380—392
Temperature dependence, ionic conductivity limits, aqueous solutions, origins of 388—389
Temperature dependence, ionic conductivity limits, aqueous solutions, water conductivity limits 386—388
Temperature dependence, liquid crystal elasticity and velocity 57—59
Temperature dependence, supercritical aqueous solutions, intermolecular potentials 164—173
Teperick, S. 463(165) 507
Tester, J.W. 116(19 35) 163(19) 174(305) 195 203
Tetsuka, A. 498(322) 511
Theodorou, D.N. 131(136) 198
Thermodynamic free energy perturbation, supercritical aqueous solutions, intermolecular potentials 170—173
Thermotropic liquid crystals, characteristics of 42—43
Thermotropic transitions, anisotropic attractive interactions, Gay — Berne liquid crystal model 63—65
Thiele, E. 240(185) 428
Thiessen, W.E. 158(211) 160(211) 201
Thirumalai, D. 94(164) 112
Thole, B.T. 138(176) 200
Thomas, E.L. 477(238 241) 509
Thomason, T.B. 116(17—18) 163(17) 195
Thompson, P. 117(41) 171(41) 179(41) 181(41) 196
Three pulse photon echo peak shift (3PEPS), monohydroxy alcohols, ionic/dipolar solvation dynamics 279—281
Three pulse photon echo peak shift (3PEPS), monohydroxy alcohols, nonpolar solvation dynamics 293—297
Three pulse photon echo peak shift (3PEPS), nonpolar solvation dynamics 222
Three pulse photon echo peak shift (3PEPS), polar solvation dynamics, solvent time correlation function 214—216
Three-dimensional pattern selection, Turing spatial patterns 472—480
Three-dimensional pattern selection, Turing spatial patterns, bifurcation diagrams 472—476
Three-dimensional pattern selection, Turing spatial patterns, minimal surfaces 477—480
Three-dimensional spatial patterns, Turing pattern analysis of 447
Thual, O. 466(175) 480(257) 487(175) 508 510
Tildesley, D.J. 97(174) 99(174) 112
Time-dependent fluorescence (TDF), microscopic solvation dynamics, Brownian oscillator model 233—235
Time-dependent fluorescence Stokes shift (TDFSS), ion solvation dynamics 252—253
Time-dependent fluorescence Stokes shift (TDFSS), monohydroxy alcohols, ion and dipolar solvation dynamics 281—282
Time-dependent fluorescence Stokes shift (TDFSS), polar solvation dynamics, experimental protocols for 217—218
Time-dependent fluorescence Stokes shift (TDFSS), polar solvation dynamics, solvent time correlation function 213—216
Time-dependent mean field (TDMF), theory, ionic conductivity limits, electrolyte solutions 372—374
Timini, B. 67(68) 109
TIP4P water model, microscopic behavior of supercritical water 132
TIP4P water model, microscopic behavior of supercritical water, hydrogen bonding 147 153—156
TIP4P water model, solvation dynamics in water, rotational dissipative kernel calculations 267—268
Tirapegui, E. 469(201) 487(288) 508 510
Tironi, I.G. 133(163) 140(163) 199
TJE water model, supercritical water, analysis, microscopic behavior 133
Tkachenko, A. 78(119) 111
Tlidi, M. 480(267—268) 484(268) 491(267—268) 499(267) 510
Toedheide, K. 116(30) 195
Tomes, A. 50(15) 108
Tominaga, K. 211(23) 213(23) 229(149) 265(229) 275(229) 357(23) 362(23) 365—366(301) 383(301) 394(301) 401(301) 423 427 429 431
Toner, J. 477(235) 496(235) 509
Topp, M.R. 217(47) 246(47) 277(47) 424
Toriumi, H. 84(135) 111
Torque-torque correlation function, wavenumber-dependent orientational self-dynamic structure factor 259—260
Torre, R. 92(153) 94(160) 112
Torry, L.A. 117(39) 195
Torsional potential, molecular flexibility, liquid crystals 79—80
Tosi, M.P. 173(302—303) 203
Total correlation function integrals (TCFI), supercritical aqueous solutions, solvation thermodynamics 185—187
Total energy-energy time correlation function, monohydroxy alcohols, ion and dipolar solvation dynamics 281—282
Toth, G. 160(212) 201
Toth, J. 439(35) 504
Toukan, K. 133(153) 199
Townsend, S.H. 116(32) 195
Tramp, R.H. 118(60) 119(60) 120(60 98) 124(60 98) 125(60) 127—129(60) 143(60) 143(60) 153(60) 157(60) 158(60) 160(60) 196—197
Tranfield, R. 67(66) 109
Transient hole burning measurements, acetonitrile solvation dynamics 319—320
Transient hole burning measurements, nonpolar solvation dynamics 222
Transient hole burning measurements, nonpolar solvation dynamics, ultrafast response in dense liquids 334—343
Transition metal complexes, calamatic liquid crystal structure 48
Transition state theory (TST), supercritical aqueous solutions, kinetic rate constants, solvation effects on 187—192
Translational diffusion, liquid crystal molecular models 86—89
Translational dissipative kernel, calculation of 246
Translational dissipative kernel, solvation dynamics in water, calculation of 268
Translational frictional kernel, ionic conductivity limits, concentration dependence 415
Translational frictional kernel, ionic conductivity limits, electrolyte solutions 375—378
Translational memory kernel, nonassociated polar solvation dynamics 317
Translational molecular order, liquid crystals 40—42
Translational self-diffusion coefficient, liquid crystal hard sphere model 63—64
Transverse current term, vibrational energy relaxation (VER), frequency-dependent friction calculation 345—349
Transverse polarizability, frequency dependence 27—28
Trebin, H. 68(80) 70—71(93) 110
Tribelsky, M.I. 454(142 146) 466—467(170) 469(170) 486(170) 500(342) 507 512
Tsimring, L.S. 469(200 202) 471(213) 496(311) 508—509 511
Tsuzuki, T. 457(154) 507
Tucker, S.C. 160(219) 187(333—337) 188(219) 201 204
Tuckerman, M. 133(159) 199
Tuckerman, M.E. 213(25) 344—345(288) 350(288) 423 431
Turing instability, spatial patterns, research background 436—441
Turing instability, steady-Hopf mode interactions 481—488
Turing patterns 456—480
Turing patterns, chlorine-dioxide-iodine-malonic acid (CDIMA) reaction, gel and color indicator, role of 442—445
Turing patterns, chlorite-iodide-malonic acid (CIMA) system, experimental protocols for 441—450
Turing patterns, new systems, analysis of 449—450
Turing patterns, pattern selection theory, degeneracies 454—455
Turing patterns, ramps and dimensionality parameters 446—447
Turing patterns, reaction diffusion models 456—458
Turing patterns, research background 436—438
Turing patterns, three-dimensional pattern selection 447 472—480
Turing patterns, three-dimensional pattern selection, bifurcation diagrams 472—476
Turing patterns, three-dimensional pattern selection, minimal surfaces 477—480
Turing patterns, Turing patterns, two-dimensional pattern selection 458—472
Turing patterns, Turing patterns, two-dimensional pattern selection, boundaries 467—469
Turing patterns, Turing patterns, two-dimensional pattern selection, experiments using 445—446
Turing patterns, Turing patterns, two-dimensional pattern selection, long-wavelength instabilities and phase equations 469—472
Turing patterns, Turing patterns, two-dimensional pattern selection, re-entrant hexagons 464—465
Turing patterns, Turing patterns, two-dimensional pattern selection, standard bifurcation diagram 458—464
Turing patterns, Turing patterns, two-dimensional pattern selection, subcritical localized structures 465—467
Turing patterns, Turing — Hopf interaction, experimental protocols 447—449
Turing stability, pattern selection theory and 451
Turing — Hopf interaction, experimental protocols 447—449
Turing — Hopf interaction, reaction-diffusion models 456—458
Turing — Hopf interaction, spatial patterns 480—495
Turing — Hopf interaction, spatial patterns, genericity 491—492
Turing — Hopf interaction, spatial patterns, steady-Hopf mode interactions 481—488
Turing — Hopf interaction, spatial patterns, steady-Hopf mode interactions, bistability and localized structures 486—488
Turing — Hopf interaction, spatial patterns, steady-Hopf mode interactions, mixed modes 484—486
Turing — Hopf interaction, subharmonic instabilities 488—490
Turing — Hopf interaction, two-dimensional spatiotemporal dynamics 493—495
Turing, A. 436(1) 438—439(1) 503
Twist elastic constants, liquid crystal elasticity and velocity 55—57
Two-dimensional spatial patterns, spatiotemporal dynamics 493—495
Two-dimensional spatial patterns, Turing pattern experiments with 445—446
Two-dimensional spatial patterns, Turing pattern experiments with, boundaries 467—469
Two-dimensional spatial patterns, Turing pattern experiments with, long-wavelength instabilities and phase equations 469—472
| Two-dimensional spatial patterns, Turing pattern experiments with, re-entrant hexagons 464—465
Two-dimensional spatial patterns, Turing pattern experiments with, standard bifurcation diagram 458—464
Two-dimensional spatial patterns, Turing pattern experiments with, subcritical localized structures 465—467
Ueno, T. 93(159) 112
Ullo, J.J. 133(155) 199
Ultrafast femtosecond spectrosopy, liquid crystal molecules, reorientational motion 93—97
Ultrafast laser spectroscopy, liquid transport analysis and 212—213
Ultrafast polar solvation, collective vs.single particle motion 298—301
Ultrafast polar solvation, continuum model 323—329
Ultrafast polar solvation, continuum model, extended molecular hydrodynamic theory and 324—326
Ultrafast polar solvation, continuum model, instantaneous normal mode technique 326—327
Ultrafast polar solvation, continuum model, polar/nonpolar solvent response competition 328
Ultrafast polar solvation, continuum model, validity of, research on 328—329
Ultrafast polar solvation, monohydroxy alcohols, ionic/dipolar solvation dynamics 277—281
Ultrafast polar solvation, monohydroxy alcohols, nonpolar solvation dynamics 292—297
Ultrafast polar solvation, monohydroxy alcohols, research issues concerning 297—301
Ultrafast polar solvation, nonassociated polar solvents 315—323
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids 334—343
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, energy-energy correlation function 337—340
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, Gaussian time constant 342—343
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, mode-coupling theory (MCT) 338—340
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, solute-solvent two-particle binary dynamics 340—342
Ultrafast polar solvation, nonpolar solvation dynamics, binary interaction, in dense liquids, theoretical background 334—337
Ultrafast polar solvation, picosecond laser pulse experiments 218—219
Ultrafast solvation, electron transfer reactions, nonpolar solvent response 414
Umbanhowar, P.B. 463(161) 497(161) 507
Underdamped non-Markovian theory, microscopic solvation dynamics, solvent inertia 230—233
Underwood, I. 43(4) 108
Uniaxial ellipsoid revolution model, excluded volume liquid crystal interactions 60—61
Uniaxial magnetic anisotropy, defined 3
Uniaxial magnetic anisotropy, Landau — Lifshitz ferromagnetic resonance 10—16
Unit step-function, fluctuation theory 19
Urban, S. 50—51(17) 54(17) 93(154) 108 112
Vafek, O. 436(10) 503
Vaidya, D. 63(51) 109
Vajda, S. 409(335) 432
Vallauri, R. 127(116) 133(142) 135(173) 140(173) 142(173) 155(194) 198—200 402(322) 405(322) 432
Valletta, D.P. 480(263—264) 489(263—264) 510
van der Haegen, R. 68(73) 110
Van der Meulen, P. 219(64) 230(64) 246(64) 277(64) 278(64) 417(352) 420(64) 424 433
van der Zwan, G. 216(40) 233(40) 246(39) 247(40) 277(39—40) 325—326(40) 367(308) 407(329) 423 432
Van Dorp, J.H. 116(25) 195
Van Duijnen, P.T. 133(149) 135(149) 139(149) 199
van Duijnevelt, J. 63(53) 82(133) 109 111
van Gunsteren, W.F. 120(100) 129(128) 131(100 128) 133(163 167) 140(128 163) 143(128) 170(267) 171(100) 197—199 202
van Haeften, B. 467(185) 508
Van Hare, D.R. 163(250) 202
van Hove time correlation function, vibrational energy relaxation (VER) and, binary friction, microscopic expression of 347—349
van Rioj, R. 63(52) 109
Van Saarloos, W. 466(172—173 176) 484(277) 487(176) 507—508 510
Van Vleck — Weisskopf — Froelich absorption vs. Lorentz absorption 8—10
Van Vleck — Weisskopf — Froelich absorption, collision broadening and 8
Van Vleck — Weisskopf — Froelich absorption, comparison with other functions 31—34
Van Vleck — Weisskopf — Froelich absorption, step, aftereffect and pulse functions for 18—19
Van Vleck — Weisskopf — Froelich equation, variable forms for 34—35
van Vleck, J.H. 5(10) 8(10) 35(10) 36
Vanakaras, A. 72(99) 110
Vanbruggen, M. 59(34) 109
Vanderkooij, F. 59(34) 109
Vandershoot, A. 78(118) 111
Varea, C. 467(184) 508
Vasquez, D.A. 501(361—362) 513
Vass, D.G. 43(4) 108
Vass, H. 79(126) 102—103(183) 111 113
Vastano, J.A. 439(36) 441(45) 504
Vasu, T. 118(57) 119(57) 130(57) 196
Veermen. 61(39) 109
Vega, C. 72—74(100) 77(100) 110
Velarde, M. 500(342) 512
Venables, D.S. 316—317(268) 319—320(268) 430
Veracini, C. 53(19) 108
Verdasca, J. 438(27) 447(84) 461(84) 463—464(84) 495(27) 497(27 84) 503 505
Verlet, L. 260(212) 429
Verma, A.L. 80(128) 111
Vertex function, solute-solvent interaction 420—421
Vetrov, A.A. 119(85) 197
Vibrational energy relaxation (VER), binary interactions, ultrafast response in dense liquids 335—343
Vibrational energy relaxation (VER), research background on 211—213
Vibrational energy relaxation (VER), solvation dynamics and 223
Vibrational energy relaxation (VER), solvation dynamics and, frequency-dependent friction calculation 345—353
Vibrational energy relaxation (VER), solvation dynamics and, quantum effects at high frequency 353—355
Vibrational energy relaxation (VER), solvation dynamics and, theoretical background 343—345
Vibrational phase relaxation (VPR), solvation dynamics and, bimodal friction, nonclassical behavior and 355—363
Vibrational phase relaxation (VPR), solvation dynamics and, bimodal friction, nonclassical behavior and, Kubo — Oxtoby theory 357—360
Vibrational phase relaxation (VPR), solvation dynamics and, force-force time correlation function (FFTCF) 360—362
Vibrational phase relaxation (VPR), solvation dynamics and, gas-liquid criticality 363
Vibrational phase relaxation (VPR), solvation dynamics and, subquadratic quantum number dependence 362—363
Vibrational relaxation, solvation dynamics and 222—223
Vidal, C. 436(8) 439(8) 441(43) 499(43) 503—504
Vigil, R.D. 447(94) 505
Vijaydamodar, G.V. 250(209) 259(209) 401—402(319) 429 431
Vilfan, M. 70(87) 110
Viscosity parameters in glassy liquids, ion solvation dynamics 301—315
Viscosity parameters in glassy liquids, ion solvation dynamics, future research issues 313—315
Viscosity parameters in glassy liquids, ion solvation dynamics, ion-dipole direct correlation function 304
Viscosity parameters in glassy liquids, ion solvation dynamics, numerical results 305—313
Viscosity parameters in glassy liquids, ion solvation dynamics, orientational relaxation 303—304
Viscosity parameters in glassy liquids, ion solvation dynamics, solvent orientational polarization relaxation, generalized rate calculation 304—305
Viscosity parameters in glassy liquids, ion solvation dynamics, solvent static correlation functions 304
Viscosity parameters in glassy liquids, ion solvation dynamics, theoretical background 303—304
Viscosity parameters, dynamic structure factor calculations 419—420
Viscosity parameters, Gay — Berne liquid crystal model 69—70
Viscosity parameters, ionic conductivity limits, aqueous solutions, temperature dependence and 388—389
Viscosity parameters, liquid crystal structure and 55—59
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids 334—343
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, energy-energy correlation function 337—340
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, Gaussian time constant 342—343
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, mode-coupling theory (MCT) 338—340
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, solute-solvent two-particle binary dynamics 340—342
Viscosity parameters, ultrafast polar solvation, nonpolar solvation dynamics in dense liquids, theoretical background 334—337
Volatile solute behavior, supercritical aqueous solutions, intermolecular potentials 166—173
von Oertzen, A. 487(287) 502(378) 510 513
Voroney, J.-P. 500(349) 512
Vorontsov, M.A. 500(341) 512
Vosnovskii, S.V. 6(17) 10(17) 36
Voth, G.A. 211(2) 224(2) 422
Wacker, A. 480(266) 490(266) 510
Wagner, A. 301(257) 430
Wakai, C. 117(53—54) 128(53—54) 196 329(274) 431
Wakita, H. 126(109) 158(109) 198
Walba, D.M. 80(127) 99(175) 111—112
Waldeck, D.H. 211(20) 224(20) 280(244) 423 430
Walden’s rule, ionic conductivity limits 224
Walden’s rule, ionic conductivity limits, electrolyte solutions 364—371
Walden’s rule, ionic conductivity limits, monohydroxy alcohols 392—398
Walden’s rule, ionic conductivity limits, monohydroxy alcohols, propanol 396—398
Waldron, R.A. 15(26) 36
Walen, S.L. 332(278) 431
Walgraef, D. 436(4 9) 438(9) 439(9 40) 445(75 79) 454(79) 457(9 75 79) 466(79) 469(9) 471(212) 473(79 222) 475(75 222) 476(79 222) 486(79) 493(9 296) 495(298) 501(79 358) 503—505 507 509 511—512
Walhout, P.K. 220(84—85) 221(85) 274(81) 425
Walker, G.C. 229(149) 427
Wallen, S.L. 179(313—314) 204
Wallqvist, A. 133(150 161) 135(150) 137(150) 139(150) 142(150) 199
Walmsley, S. 64(58) 109
Walrafen, G.E. 117—118(55) 120(55) 154(55) 196 269(236) 272(236) 429
Walsh, A.M. 222(106) 425
Walshaw, J. 160(232) 201
Walton, I.C. 447(109) 506
Wan, W. 369(309) 432
Wang, J. 133(141) 135(141) 138(141) 142(141) 199
Wang, Z.-G. 479(247) 509
Warren, M.A. 67(70) 68—69(79) 109—110
Warren, P. 59(32) 109
Warshel, A. 133(151) 135(151) 199
Water see also "Heavy water" "Supercritical
Water, biological water, solvation dynamics and dielectric relaxation in 411—413
Water, ionic conductivity limits, water-alcohol mixtures 416
Water, properties of 116
Water, solvation dynamics in 263—277
Water, solvation dynamics in, deuterium isotope effect 268—269
|
|
|
Ðåêëàìà |
|
|
|