Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rektorys K. (ed.) — Survey of Applicable Mathematics
Rektorys K. (ed.) — Survey of Applicable Mathematics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Survey of Applicable Mathematics

Àâòîð: Rektorys K. (ed.)

Àííîòàöèÿ:

This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics, first published in English in 1969.
The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index.
Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc.
For researchers, students and teachers of mathematics and its applications.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1969

Êîëè÷åñòâî ñòðàíèö: 1369

Äîáàâëåíà â êàòàëîã: 06.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Rhombus, formulae for geometrical elements      135
Ricatti differential equation      747—748
Riemann and Lebesgue integration, distinction between      596
Riemann and Lebesgue theorem      712
Riemann integration      550
Riemann surface      966
Riemann Theorem      975—976
Riemann zeta function      672
Riemann — Schwarz reflection principle      983
Riesz — Fischer theorem      1013
Right conoid      354
Right helicoid      311
Right parallelepiped, moment of inertia of      143
Right parallelepiped, volume and surface area of      143
Rings, associative, commutative, division      85—86
Rings, solid, volume, surface area and moment of inertia of      149
Risk, producer's and consumer's      1280
Ritz in conformal mapping      986—987
Ritz, iteration method      1152—1154
Ritz, method for boundary value and eigenvalue problems      1052—1054
Robertson's law of growth      202—203
Rolle's theorem      425
Root-mean-square      47
Roots of algebraic equations      58 1168
Roots of algebraic equations, Budan — Fourier theorem      1171
Roots of algebraic equations, connection with eigenvalues of matrices      1171—1172
Roots of algebraic equations, Descartes theorem      1170
Roots of algebraic equations, Lagrange, Maclaurin, Tillot inequalities      1169
Roots of algebraic equations, Sturm theorem      1171
Rotation, cartesian coordinate system      236
Rounding off      1268
Ruled surfaces      259—262 354 358
Ruled surfaces, undevelopable      354
Ruling lines      259
Runge method      715
Runge — Kutta formulae      1075—1076
Rytz construction of axes of ellipse      156
Saddle point      752
Sampling average (mean)      1265
Sampling characteristics      1264
Sampling coefficient of correlation      1266
Sampling coefficient of regression      1266
Sampling coefficient of variation      1266 1279
Sampling covariance      1265
Sampling frequency tables      1266—1268
Sampling graphical representation      1273
Sampling histogram      1270
Sampling inspection      1280—1281
Sampling standard deviation      1265
Sampling unbiassed      1277
Sampling variance      1265
Sampling weighted average, weighted variance      1267
Sarrus's rule      69—70
Scalar (inner) product of functions      694
Scalar (inner) product of vectors      266
Scalar fields, gradient of      270
Scalar on a surface      290
Scalar potential vector field      271
Scales      1183—1187
Scales, absolute accuracy, absolute error      1186—1187
Scales, basic uniform (regular)      1184
Scales, mapping equation      1184
Scales, modulus      1184
Scales, number axis      1184
Scales, relative accuracy      1187
Scales, uniform, quadratic, logarithmic, sine      1186
Schmidt orthogonalization process      701—702
Schwarz (or Schwarz — Cauchy) inequality      394
Schwarz constants and quotients      1091
Screw surface      354
SCROLL      354 359
Second curvature      316
Second mean value theorem      554
Second order derivatives      417 446
Sector and segment of a circle, geometrical formulae      137—138
Sector of an annulus, geometrical formulae      139
Self-adjoint expressions and operators      802 914 1014
Self-adjoint problems, eigenvalue      805 816 915
Self-tangency, point of      329
Semi-axis, polar coordinates      216
Semi-closed (semi-open) interval      397
Semiconvergent series      689
Semicubical parabola      164—165
Semilogarithmic paper      1188
Sentences      39—40
Separation of variables      739 1098
Sequences of constant terms      374—381
Sequences of equicontinuous functions      668
Sequences of uniformly bounded functions      667
Sequences with variable terms, integration and differentiation of      668—669
Sequences with variable terms, uniformly convergent      666
Sequences, bounded above or below      377
Sequences, Cauchy      999
Sequences, convergent      375 666 998
Sequences, decreasing      379
Sequences, divergent      375
Sequences, fundamental      999
Sequences, important formulae and limits      380—381
Sequences, increasing      379
Sequences, monotonic      379
Sequences, oscillating      382
Sequences, subsequences of      377
Series in two or more variables      680 712
Series with variable terms condition of convergence      671—673
Series with variable terms condition of convergence, differentiation      673
Series with variable terms condition of convergence, integration      672—673
Series with variable terms condition of convergence, survey of important formulae      690—691
Series with variable terms condition of convergence, uniformly convergent      671
Series, applications of      687—690
Series, convergent and divergent      382 953—954
Series, divergent, application of      688—690
Series, domain of convergence      954
Series, expansions into series      683—686
Series, harmonic      382
Series, power series      674 955
Series, power series, radius of convergence      955
Series, tables      393—395 683—686
Serret — Frenet formulae      308—309
Sets, bounded      996
Sets, closed      996
Sets, compact      1000
Sets, concepts of      82—85 994—1019
Sets, connected      995
Sets, convex      995
Sets, countable      907
Sets, dense      999
Sets, harmonic of four points      229
Sets, mapping of, definitions      84
Sets, measurable      595
Sets, metric spaces      997
Sets, open and closed      994—997
Sets, point of accumulation (cluster point, limit point)      994
Sets, regions      995—996
Sets, spaces      997—1019
Several variables, functions of      440—485
Several variables, functions of, composite functions, limit, continuity      440—444
Several variables, functions of, extremes      476—484
Several variables, functions of, introduction of new variables      470—476
Several variables, functions of, partial derivatives of      445
Several variables, functions of, survey of important formulae      484—485
Several variables, functions of, transformations      470—476
Sheaf of planes      241
Shells, problems in theory of      913
Significance tests, $2\times2$ contingency table      1275—1276
Significance tests, approximate, based on normal distribution      1276
Significance tests, confidence interval      1274 1277
Significance tests, critical values      1273
Significance tests, degrees of freedom      1274
Significance tests, difference in relative frequencies      1275
Significance tests, estimated variance      1274
Significance tests, F-test      1275
Significance tests, null hypothesis      1273
Significance tests, Student's t-test      1273
Signs and notation      27—37
Similar matrices      97
Simple epicycloid or hypocycloid      163
Simple function in a region O      943
simple harmonic motion      194
Simpson's rule for definite integrals      593—594
Sine and cosine, integrals containing      529—539
Sine, curves      193—194
Sine, integral      488 588
Sine, paper      1188
Sine, theorem      117
Singular conic sections      227
Singular integral equations      933
Singular integral or solution      737 871
Singular points of curve      299 326—330
Singular points of differential equation      751
Singular points of functions of a complex variable      960
Singular points of surface      344
Skeleton collinear nomogram      1204—1206
Skew curve      301
Skew field      86
Skew lines, distance between      2 245—246
Skew surface      354 359
Skew symmetric matrices      89
Skew symmetric tensors      294
Slope of a straight line      208
Small numbers, computation with      436—438
Smooth curve      299 417 603
Smooth function      417
Smooth surface      344
Sobotka's rectification of a circular arc      152
Solenoidal (sourceless) vector field      272
Solid analytic geometry, coordinate systems      233—237
Solid analytic geometry, coordinate systems, cylindrical (semi-polar)      234
Solid analytic geometry, coordinate systems, rectangular      233—234
Solid analytic geometry, coordinate systems, spherical (polar)      234—235
Solid analytic geometry, linear concepts      237—247
Solids, integral calculus, applications of      653
Solids, volumes, surfaces, centroids and moments of inertia      142—149
Solution of ordinary differential equation      731—732 737
Solution of ordinary differential equation, by approximate methods      1065—1097
Soreau's equation      1195
Space(s)      997—1019
Space(s), $E_{n}$      996
Space(s), $L_{2}$      997
Space(s), $L_{p}$      998
Space(s), Banach      1003—1004
Space(s), C      998
Space(s), complementary subspace      1004
Space(s), complete, separable, compact      999—1001
Space(s), curve, definition      301
Space(s), Euclidean      996
Space(s), Hilbert      1003—1005
Space(s), ideal elements      1000
Space(s), linear      1001
Space(s), linear metric, linear normed      1002
Space(s), linear, manifold      1002
Space(s), Metric      997
Space(s), normed      1002
Space(s), operators, additive and homogeneous      1009 1011
Space(s), operators, adjoint      1012 1014
Space(s), operators, bounded, in Hilbert space      1013—1016
Space(s), operators, characteristic value, characteristic vector      1015
Space(s), operators, continuous linear      1009
Space(s), operators, eigenvalue, eigenvector      1015
Space(s), operators, functionals      1007—1008
Space(s), operators, linear and other      1007—1013
Space(s), operators, norm of      1010
Space(s), operators, positive, positive definite      1018
Space(s), operators, self-adjoint      1014
Space(s), operators, spectrum of      1015
Space(s), operators, spectrum of, pure point      1016
Space(s), operators, symmetric      1018
Space(s), operators, unbounded, in Hilbert space      1016—1019
Space(s), real      998
Space(s), vector      1001—1002
Spathe's theorem      773
Special Cauchy problem      860—861
Spectrum of an operator      1015
Spectrum of an operator, pure point      1016
Sphere, equation of      247
Sphere, geometrical formulae      147—148
Sphere, homeomorphic image of a      997
Sphere, sector of a      147
Sphere, segment of a      148
Sphere, volume, surface area, moment of inertia      147—148
Spherical coordinate surfaces      235
Spherical coordinates in solid analytic geometry      234—235
Spherical coordinates, transformations of differential equations and expressions      470—476
Spherical coordinates, transformations of vectors and corresponding operators      274
Spherical functions      722
Spherical harmonics      725—727
Spherical layer      148
Spherical Legendre functions      722
Spherical ring      148
Spherical surface interior diameter      638
Spherical triangle, area      121
Spherical triangle, definition      120
Spherical triangle, Euler      120—121
Spherical triangle, fundamental properties      121
Spherical triangle, general (oblique)      123—124
Spherical triangle, right-angled      122
Spherical trigonometry      120—124
Spheroid, prolate and oblate      148
spirals      174—179
Spirals, Archimedes      174—176
Spirals, hyperbolic or reciprocal      176
Spirals, logarithmic, equiangular or logistic      177—179
Sportka, Czech lottery      1247
Spring constant      194
Square integrable functions      598 691
Standard deviation      1251 1265 1279
Standard errors, estimates of      1306—1307
Standard integrals      487—488
Star of planes      242
Starting point of a vector      264
Statical moment, integral calculus for curves in space      649
Statical moment, integral calculus for plane curves      647—648
Statical moment, integral calculus for plane figures      652
Statical moment, integral calculus for solids      656
Statical moment, integral calculus for surfaces      659—660
Stationary heat-conduction equation      1102—1103
Stationary points of a function      431
Statistics      see "Mathematical statistics"
Step of argument, step of table      1225
Stereographic projection      938—939
Stieltjes integral      599
Stirling formula      588
Stirling interpolation formula      1232—1233
Stokes theorem      277 643
Straight line equations      208—212 243
Straight line equations, Directed (oriented)      212—215
Straight line equations, examples and theorems      209—212
Straight line equations, general, vector and parametric forms      208 243
Straight line equations, gradient and intercept      208
Straight line equations, intersection of 2 lines      210—211
Straight line equations, normal equation      215—216
Straight line equations, pencil of lines      211
Straight line equations, reduced      243
Straight line equations, through 2 given points      210 244
Straight lines, angle between      212 240
Straight lines, bisectors of angle between      215—216
Straight lines, condition for being parallel or perpendicular to a plane      246 247
Straight lines, conditions for 2 to be perpendicular or parallel      213—214 246—247
Straight lines, directed (oriented)      212
Straight lines, distance of a point from      216 245—246
Straight lines, forming conic sections      227
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå