Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Rektorys K. (ed.) — Survey of Applicable Mathematics
Rektorys K. (ed.) — Survey of Applicable Mathematics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Survey of Applicable Mathematics

Àâòîð: Rektorys K. (ed.)

Àííîòàöèÿ:

This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics, first published in English in 1969.
The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index.
Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc.
For researchers, students and teachers of mathematics and its applications.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1969

Êîëè÷åñòâî ñòðàíèö: 1369

Äîáàâëåíà â êàòàëîã: 06.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Clausen's transformation      391
Closed curve      299
Closed interval      397
Closed region, closed circle      440 996
Clothoid      179
Cluster point      994
Codazzi fundamental equations for surfaces      371
Cofactor in a determinant      68
Collineation nomograms      1195—1210
Collineation nomograms, anamorphosis, conditions of      1196
Collineation nomograms, skeleton      1204
Combinations, definition and theorems      56
Common logarithms      53
Commutative groups and rings      85—86
Commutative law governing vectors      264 267
Comparison function of eigenvalue problem      804 915
Comparison test for convergence of series      384
Comparison theorem      772 809
Complementary subspace      1004
Complete induction      40—41
Complete sequence      1007
complex numbers      47—49
Complex numbers, absolute value (modulus) of      48
Complex numbers, closed (completed, extended) plane of      938
Complex numbers, conjugates of      48
Complex numbers, principal value of the argument      49
Complex numbers, trigonometric form      48—49
Complex variable, Functions of a      938—970
Complex variable, functions of a, applications of the theory of functions      943
Complex variable, functions of a, Cauchy integral theorem and formula      946—948
Complex variable, functions of a, derivative      938—943
Complex variable, functions of a, fundamental concepts      938—943
Complex variable, functions of a, integrals of      943—948
Complex variable, functions of a, limit and continuity      940
Complex variable, functions of a, logarithm and power      965—970
Complex variable, functions of a, signs and notation      35
Composite functions      399 441
Composite functions, differentiation      420 450—452
Composite functions, limit      410—411
Computation, with small numbers      436—438
Concavity and convexity      429
Conchoid of a circle      191
Conchoid of Nicomedes      190—191
Conditional probability      1248
Cone right circular      146
Cone right circular, frustum of, and its centroid      146—147
Cone virtual      254
Cone volume, surface areas, moment of inertia      146—147
Conformal mapping      971—993
Conformal mapping, "adjacent" regions      981—982
Conformal mapping, boundary properties      985—986
Conformal mapping, boundary-correspondence principle      981
Conformal mapping, concept of      971
Conformal mapping, existence and uniqueness      975
Conformal mapping, extremal properties      985
Conformal mapping, homographic      971
Conformal mapping, methods of performing      978—985
Conformal mapping, methods of performing, by integral equations      989—991
Conformal mapping, methods of performing, examples      979—981
Conformal mapping, methods of performing, small parameter      991
Conformal mapping, methods of performing, variational      986—989
Conformal mapping, Riemann — Schwarz reflection principle      983
Conformal mapping, Riemann's theorem      975
Conformal mapping, upper half-plane on a polygon      992—993
Conformally collinear (parallel) vectors      265—266
Congruent matrices      102
Congruent matrices, Hermitian      106
Congruent transformation of cartesian coordinates in a plane      224—225
Conic section(s), axes of      231
Conic section(s), conjugate diameters      231
Conic section(s), conjugate direction of parallel chords      230
Conic section(s), discriminant of      226
Conic section(s), general equation of a      226
Conic section(s), polar of a point with respect to      230
Conic section(s), pole of a line with respect to      230
Conic section(s), singular and regular (non-singular)      227
Conic section(s), tangents to      231—232
Conical surfaces      259
Conicoids      247—257
Conjugate diameters of circle      151
Conjugate diameters of conic section      231
Conjugate gradients method      1158—1160
Conoids      261—262
Conservative vector field      271
Constant strength catenary      185
Constrained extremes      479
Consumer's risk      1280
Continuity      404 442
Continuity, Cauchy's and Heine's definitions      404—405
Continuity, right- and left-hand      405
Continuity, sectional or piecewise      407 443
Continuous dependence of solution on initial and boundary conditions and on parameters      770 826 866
Continuous extensibility on the boundary      443 951
Contraction mapping      1008
Contraction of tensors      293
Contravariant and covariant tensor on a surface      289
Contravariant and covariant tensors      285
Contravariant and covariant vector coordinates      280 282
Contravariant and covariant vector on a surface      287
Contravariant and covariant vectors      285
Control of production processes by attributes      1282
Control of production processes by variables      1282—1283
Control of production processes, chart      1282
Convergence of improper integrals      560 565 623
Convergence of sequences and series      374 381 666 670
Convergence of sequences and series in the mean      693 998—999
Convergence of sequences and series, absolute      383 389
Convergence of sequences and series, Bolzano — Cauchy condition      375 562 567 666 671
Convergence of sequences and series, Clausen's transformation      391
Convergence of sequences and series, conditional      383
Convergence of sequences and series, domain of      954
Convergence of sequences and series, improvement of      390
Convergence of sequences and series, radius of      675 955
Convergence of sequences and series, tests for      384—388
Convergence of sequences and series, uniform      666 671 954
Convexity      429
Coordinate systems      205 233
Coplanar vectors      265—266
Correctness of boundary value problems      866
Correlation coefficient      1266
Correlation table      1270
Correspondence between two sets      84
Cosine integrals      488 532—535
Cosine theorem for plane triangle      117
Cosine theorem for spherical Euler triangle      123
Courant's maximum-minimum principle      809
Covariance and correlation coefficient      1258
Cramer's rule      74
Critical damping      197
Cross product of vectors      267
Cross ratio of four points      227—228
Cube, volume and surface of      143
Cubic equations      77—79
Cubic equations, solution by factorization      78
Cubic equations, solution, algebraic      78
Cubic equations, solution, trigonometrical      78—79
Cubic, discriminating, of a quadric      256
Cubical parabola      164
Curl of a vector      273
Curtate cycloid      167
Curtate epicycloid      169
Curtate involute of a circle      173
Curvature      315—316 364
Curvature, Gaussian      368
Curvature, geodesic      372—373
Curvature, normal      366
Curve(s) in space      298 301
Curve(s) in space, implicit equations defining      300—301
Curve(s) in space, integral calculus      649
Curve(s) of greatest slope on a surface      373
Curve(s) of oscillations      194—196
Curve(s) of r-th class      1020—1021
Curve(s) on surfaces      347—355
Curve(s), approximate constructions of      203—204
Curve(s), canonical equations (representation) of      317
Curve(s), closed      602
Curve(s), contact of      319—326
Curve(s), cyclic      165—174
Curve(s), definitions and equations      298—301
Curve(s), directrix      259—260
Curve(s), double points of      299
Curve(s), equation as locus of a point      207—208
Curve(s), equation of tangent to a      305
Curve(s), evolutes and involutes of      335—338
Curve(s), exponential      181—183
Curve(s), first and second curvatures      309 315—319
Curve(s), fitting to empirical data      1285—1301
Curve(s), fitting to empirical data, linear regression equations, numerical examples      1291—1299
Curve(s), gradient on a surface      373
Curve(s), growth      200—204
Curve(s), intrinsic equations of      318
Curve(s), Jordan      603
Curve(s), length of      303 647 649
Curve(s), length of arc, linear element      303
Curve(s), logistic      202
Curve(s), natural equations of      318
Curve(s), oriented in the sense of increasing parameter      628
Curve(s), osculating circle      323
Curve(s), parallel      334—335
Curve(s), parametric equations      299
Curve(s), piecewise smooth      298 602
Curve(s), Plane      150—204
Curve(s), positively oriented with respect to its interior      628
Curve(s), power      163—165
Curve(s), scaleholder      1185
Curve(s), simple finite piecewise smooth      602—604
Curve(s), simple finite piecewise smooth, positively oriented      628
Curve(s), simplicity of      602
Curve(s), smooth      299 417 603
Curvilinear coordinates of a point on a surface      346
Curvilinear integrals      628—637
Curvilinear integrals of first and second kinds      630
Curvilinear integrals, along a curve in space      633
Curvilinear integrals, geometric and physical meanings      632—633
Cusp of a curve      329
Cuspidal edge      354
Cyclic curves      165—174
Cyclic curves, construction of centres of curvature      174
Cycloids      165—168
Cycloids, curtate and prolate      167
Cylinder, hollow (tube)      146
Cylinder, hyperbolic, parabolic, real and virtual elliptic, canonical and transformed equations      255
Cylinder, right circular      145
Cylinder, right circular of given volume having least surface      433
Cylinder, segment of      145
Cylinder, truncated      145
Cylinder, volume, surface areas, moment of inertia      144—146
Cylindrical coordinates in solid analytical geometry      234
Cylindrical coordinates transformations of differential equations and expressions into      470
Cylindrical functions      716
Cylindrical helices      335
D'Alembert formula      902
D'Alembert ratio test for convergence of a series      385
Damped oscillations, forced, curves of      199—200
Damped oscillations, free, curves of      196—198
Damped vibrations, differential equation      844
Danilevski method      1164—1167
Darboux sums      550—551
De Moivre's formula and theorem      49
De Morgan's formulae      84
Definite integrals      550 605 618
Definite integrals, approximate evaluation      592—595
Definite integrals, Cauchy — Riemann definition      551
Definite integrals, Chebyshev's formula      594—595
Definite integrals, rectangular rule      592—593
Definite integrals, Simpson's rule      593—594
Definite integrals, substitution      558 615 621
Definite integrals, table      579—584
Definite integrals, trapezoidal rule      593
Deflection of a loaded plate      1106—1108
Deformation tensor      287 294
Degenerate quadric      256
Degrees of freedom      1274 1291
Degrees of freedom for residual sum of squares      1307
Delta symbol      see "Kronecker"
Dense set      999
densities      895
Dependence of functions      458—461
Dependence of functions of solutions of initial and boundary value, problems on initital and boundary conditions and parameters      770 826 866
Dependent variable      397
derivatives      415 444
Derivatives of a product of functions      421—422
Derivatives of a vector      269
Derivatives of composite and inverse functions      420—421
Derivatives, fundamental formulae      417—419
Derivatives, general theorems on      425—426
Derivatives, improper, infinite      416
Derivatives, interchangeability of mixed      446
Derivatives, left-hand (right-hand)      416
Derivatives, partial      444—446
Derivatives, partial, of several variables      445
Descartes's folium      188—189
Descartes's theorem      1170
Determinants, addition rule      68
Determinants, cofactor      68
Determinants, definition and theorems      67—70
Determinants, evaluation of      69
Determinants, expansion according to i-th row      68
Determinants, Gram      461
Determinants, minor      68
Determinants, multiplication of      68—69
Determinants, Wronskian      461
Developable surfaces, differential equation of      360
Differences      422 1221
Differences of sets      83
Differential      422
Differential calculus, functions of a real variable      397—439
Differential calculus, survey of important formulae      438—439
Differential equations, "Approximate" and "numerical" solutions, meaning explained      1065
Differential equations, Bernouilli's      746—747
Differential equations, Bessel      717 790
Differential equations, Bessel function of second kind      721 797
Differential equations, Clairaut's      758
Differential equations, classification and basic concepts      731—738 858—860 882
Differential equations, discriminant curve      759
Differential equations, Euler's      784—785
Differential equations, Graphical analysis, solution by      1217—1219
Differential equations, Hermite's      798
Differential equations, integrals of      731—738
Differential equations, Lagrange's      757—758
Differential equations, Laguerre's      798
Differential equations, Laplace's      884
Differential equations, Legendre's      797
Differential equations, linear      743 775
Differential equations, Liouville's formula      777
Differential equations, orders of      730—731
Differential equations, orders of, methods of reducing      769—770
Differential equations, ordinary and Partial, distinction between      730
Differential equations, oscillatory solution      112
Differential equations, systems of      730 817
Differential equations, trajectories      761—762
Differential equations, uniqueness of solution      734—737
Differential equations: Ordinary      730—857
Differential equations: Ordinary systems of      817
Differential equations: Ordinary systems of canonical form      817—818
Differential equations: Ordinary systems of dependence and stability of solutions      826—828
Differential equations: Ordinary systems of first integrals of      828—832
Differential equations: Ordinary systems of homogeneous, fundamental, non-homogeneous      819—824
Differential equations: Ordinary systems of vector (matrix) form      818—819
Differential equations: Ordinary, approximate solutions of boundary value problems      1083—1090
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå