Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Rektorys K. (ed.) — Survey of Applicable Mathematics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Survey of Applicable Mathematics
Àâòîð: Rektorys K. (ed.)
Àííîòàöèÿ: This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics , first published in English in 1969. The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index. Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc. For researchers, students and teachers of mathematics and its applications.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1969
Êîëè÷åñòâî ñòðàíèö: 1369
Äîáàâëåíà â êàòàëîã: 06.12.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Liouville's theorem 891 961
Lipschitz condition 734—735
Ljapunov Theorem 1262—1263
Local dependence of functions 460
Locus of a point as equation of a curve 207—208
Logarithmic decrement 198
Logarithmic functions of a complex variable 965—970
Logarithmic functions of a complex variable, analytic continuation 965
Logarithmic functions of a complex variable, multi-valued 966
Logarithmic functions of a complex variable, principal and second branches 965—966
Logarithmic paper 1188 1191
Logarithmic potential 885
Logarithmic scale 1186
Logarithmic singularity 967
Logarithmic spiral 177—179
Logarithms, concept and properties 52—53
Logarithms, conversion modulus 404
Logarithms, equations 53—54
Logarithms, integral 589
Logarithms, moduli of 33
Logarithms, natural, base of 379 403—404
Logarithms, power series for 684
Logical concepts 39—40
Logistic curve 202
Lower integral of Darboux sums 550
Loxodrome 351
Maclaurin's formula 435
Maclaurin's inequality 1169
Magnitude of a vector 206 265
Mainardi equations 371
Majorant of a function 563
Majorant of a series 384 672
Mapping, conformal 971—993
Mapping, continuous 456
Mapping, contraction 1008
Mapping, definitions and specialized terms 84—85
Mapping, equations of a scale 1184
Mapping, equations of graph paper 1187 1190
Mapping, equations of nomograms 1191 1193
Mapping, linear (operator) 1009
Mapping, linear (systems of algebraic equations), composition of 101
Mapping, linear (systems of algebraic equations), definition 101
Mapping, linear (systems of algebraic equations), matrix notation for 102
Mapping, one-to-one between sets 84
Mapping, one-to-one between sets, substitution 102
Mapping, regular 455—458
Mass, integral calculus for curves in space 649
Mass, integral calculus for plane curves 647
Mass, integral calculus for plane figures 652
Mass, integral calculus for solids 655—656
Mass, integral calculus for surfaces 658—659
Massau's equation 1193 1198 1200
Mathematical physics, problems 866
Mathematical statistics 1264—1284
Mathematical statistics, basic concepts 1264
Mathematical statistics, calculations, charts and tables 1265—1273
Mathematical statistics, Estimation theory 1277—1279
Mathematical statistics, expectation 1279
Mathematical statistics, quality control 1279—1284
Mathematical statistics, significance tests 1273—1276
Mathematical statistics, standard deviation 1279
Mathematical statistics, variance 1279
Matrix, Matrices 64—66 87—106
Matrix, Matrices, - matrix 94—96
Matrix, Matrices, - matrix, divisors 95—96
Matrix, Matrices, - matrix, elementary transformation 94
Matrix, Matrices, - matrix, equivalence 94—95
Matrix, Matrices, - matrix, invariant factors 95
Matrix, Matrices, - matrix, rational canonical form 95
Matrix, Matrices, characteristic 97—98
Matrix, Matrices, characteristic, polynomial of 97
Matrix, Matrices, complex conjugate 90
Matrix, Matrices, congruent 102
Matrix, Matrices, conjunctive 106
Matrix, Matrices, decomposed into diagonal blocks 93 98
Matrix, Matrices, diagonal 94
Matrix, Matrices, diagonals, principal and secondary 64 94
Matrix, Matrices, elementary division of 96
Matrix, Matrices, Frobenius normal form 1165
Matrix, Matrices, Hermitian 106
Matrix, Matrices, higher orders, by iterative method 1162
Matrix, Matrices, Jordan block 99—100
Matrix, Matrices, minor, of order k 66
Matrix, Matrices, multiplication 87
Matrix, Matrices, n-rowed square 64
Matrix, Matrices, non-singular 88
Matrix, Matrices, operations on 87—94
Matrix, Matrices, orthogonal 90 103
Matrix, Matrices, partitioned into blocks 91—94
Matrix, Matrices, positive or negative definite, semidefinite or indefinite 105
Matrix, Matrices, product of 87
Matrix, Matrices, rank, definitions and theorems 64—66
Matrix, Matrices, regular 88
Matrix, Matrices, signature of form 105
Matrix, Matrices, similar 97
Matrix, Matrices, square 88
Matrix, Matrices, symmetric and skew-symmetric 89
Matrix, Matrices, trace of a square matrix 91
Matrix, Matrices, transposed 64
Matrix, Matrices, triangular 93
Matrix, Matrices, unitary 91
Matrix, Matrices, upper triangular, eigenvalues of 97—98
Mean approximation of number 1242
Mean curvature 316
Mean curvature, torsion 317
Mean square deviation 693
Mean-value theorems 425 554 890
Mean-value theorems for double integrals 609
Mean-value theorems, generalization for several variables 453
Mean-value theorems, generalized 426
Measurable sets 595
Median 1251
Meromorphic function 960
Metric spaces 997
Metric spaces, linear and other operators in 1007—1013
Metric tensor of a space 285—286
Metric, axioms 998
Metric, compact, precompact, relatively compact spaces 1000—1001
Meusnier theorem 365
Minkowski's inequality 47
Minor in a determinant 68
Mixed derivatives, interchangeability 446
Mixed product of three vectors 268
Modulus of a scale 1184
Modulus of a vector 265
Modulus of precision 1316
Moments of inertia, formulae for plane figures 133—142
Moments of inertia, formulae for solids 142—149
Moments, integral calculus for curves in space 649—650
Moments, integral calculus for plane curves 648
Moments, integral calculus for plane figures 653
Moments, integral calculus for solids 657
Moments, integral calculus for surfaces 660
Monodromy theory 970
Monotonic functions 429
Monotonic sequences 379
Montpellier conoid 262
Movable (free) ends of admissible curves 1037—1044
Moving polhode 165
Moving trihedron and Frenet formulae 306—315
Multiple angle formulae of trigonometric functions 112
Multiple point of a curve 299
Multiplication of matrices 87
Multiplication of tensors 293
Multiplication of vectors 266—268
Multipliers, Lagrange's method 480—481
n-component (n-coordinate) complex vector 62
n-dimensional vector space 62
N-nomogram 1201—1202
Nabla operator 272
Napier's rule 122
Natural logarithms, base of 379
Natural numbers 40—41
Natural numbers, sums of powers of 54—55
Necas theorem 1092
Negative binomial distribution 1255—1256
Negative half line 212
Negative orientation 267
Negative sense of orientation 212 234
Neil's parabola 164—165
Nephroid 171
Nets, finite difference method 1084 1094 1109—1124
Neumann see also "Dirichlet and Neumann"
Neumann problem 886
Neumann solution for Laplace equation 889
Newton definite integral 556
Newton formula, binomial theorem 57
Newton general interpolation polynomial 1223
Newton interpolation formulae, backward (second) 1230
Newton interpolation formulae, forward, for equidistant arguments 1227—1229
Newton interpolation formulae, general 1223—1225
Newton potential 885
Newton — Fourier method in conformal mapping 992—993
Newton's method for obtaining roots of algebraic equation 1178
Nicomedes's conchoid 190—191
Node 329 752
Nomograms, alignment or collineation 1195—1210
Nomograms, lattice, intersection charts 1189—1195
Nomograms, lattice, intersection charts, mapping equations of 1190
Nomograms, Transparency-using 1210—1213
Nomograms, working field of 1192
Nomographic order 1196—1198
Nomography and graphical analysis 1183—1219
Non-developable surface 354
Non-linear systems, numerical solution 1180—1182
Non-singular conic sections 227
Norm of a function 692
Norm of a tangent vector 304
Norm of a vector 265
Norm of partition 608
Normal acceleration 314
Normal cycloid 165
Normal distribution 1252—1253
Normal distribution, approximate tests based on 1276
Normal epicycloid and hypocycloid 168
Normal equation of a straight line 215—216
Normal equations 1304
Normal law of error 1316
Normal plane 309
Normal vector to a plane 238
Normal vector to a surface 350
Normed (normalized) function 695
Nuisance parameters 1265
Null vector 263
Number axis 1184
Numbers, complex 47—49
Numbers, Complex, conjugate 48
Numbers, Complex, imaginary, pure 48
Numbers, law of large numbers 1261—1262
Numbers, rational, irrational 41 43
Numbers, real 42—44
Numerical calculation of matrix eigenvalues 1160—1167
Numerical calculation of matrix eigenvalues by Danilevski's method 1164—1167
Numerical calculation of matrix eigenvalues by other iterative methods 1161—1164
Numerical methods in linear algebra 1146—1167
Numerical methods in linear algebra, Choleski's (or Banachiewicz's) method 1151
Numerical methods in linear algebra, conjugate gradients method 1158—1160
Numerical methods in linear algebra, elimination method 1146—1152
Numerical methods in linear algebra, Gauss — Seidel iteration method 1155—1156
Numerical methods in linear algebra, relaxation method 1157—1158
Numerical methods in linear algebra, Ritz iteration method 1152—1154
Numerical solutions (approximate) of ordinary differential equations 1065
Numerical solutions of algebraic and transcendental equations 1168—1182
Numerical solutions of algebraic and transcendental equations, basic properties 1168—1169
Numerical solutions of algebraic and transcendental equations, connection of roots with matrix eigenvalues 1171—1172
Numerical solutions of algebraic and transcendental equations, estimates for roots 1169—1171
Numerical solutions of algebraic and transcendental equations, methods for solving 1172—1180
Numerical solutions of algebraic and transcendental equations, methods for solving, non-linear systems 1180—1182
Obelisk, volume and centroid of 144
Oblate spheroid 148 248
Oblique trajectories 762
Observations and frequencies, transformations of 1271—1273
Observations, Calculus of 1315—1321
One-parameter family of plane curves, envelopes of 330—334
One-parameter family of surfaces, envelopes of 355
One-to-one, correspondence 84 400
One-to-one, correspondence, mapping between sets 84 456
Open interval 397
Open set 995
Operation, operator, mapping 84
Operational calculus 1125—1145 see
Operational calculus, Heaviside's 1128
Operator(s) in Hilbert space 1013
Operator(s), vector analysis 273—276
Ordering of integers 41
Ordering of real numbers 43
Ordinary differential equations 730 1065
Orientation 212
Orientation, positive and negative sense 212 234
Orientation, right-handed and left-handed 234
Oriented curve 628
Oriented projection of surface 638
Oriented straight line 212
Origin of coordinate system 205
Orthogonal and orthonormal systems 695
Orthogonal conjugate net on a surface 369
Orthogonal functions 695
Orthogonal invariants 253
Orthogonal matrix 90
Orthogonal trajectories of 1-parameter family of curves 342
Orthogonal trajectories of tangents to a curve 335
Orthogonality of a straight line and a plane 246
Orthogonality of two planes 240
Orthogonality of two straight lines 214 246
Orthonormal (function system) 695
Orthonormal (function system) with weight function 697
Oscillating series 382
Oscillations, curves of 194—200
Oscillations, curves of, aperiodic motions 197
Oscillations, curves of, damped, critical 197
Oscillations, curves of, damped, forced 199—200
Oscillations, curves of, damped, free 196—198
Oscillations, curves of, damped, supercritical 197
Oscillations, curves of, logarithmic decrement 198
Oscillations, curves of, resonance curve 196
Oscillations, curves of, transient 200
Oscillations, curves of, undamped (continuous), forced 195—196
Oscillations, curves of, undamped (continuous), free 194—195
Oscillator, weakly nonlinear 1095—1097
Oscillatory solutions to linear differential equations 771—772
Osculating circle 323
Osculating circle of vertex of ellipse 156
Osculating curves 321—325
Osculating plane 309—310
Outer product of vectors 267
p-quantile 1251
Pappus's rules 662
parabola 141—142 160—165 223—224
Parabola, as a conic section 227
Parabola, as a conic section, equation for polar 230
Parabola, constructions 161—163
Parabola, cubical and semicubical 164—165 317
Parabola, definition 223
Parabola, directrix of 223
Parabola, focus of 161
Parabola, higher degree 163—165
Parabola, parameter of 160
Parabola, sub-tangent, sub-normal 162
Parabola, theorems 161—162 223
Parabola, vertex and vertex tangent of 160
Ðåêëàìà