Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Rektorys K. (ed.) — Survey of Applicable Mathematics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Survey of Applicable Mathematics
Àâòîð: Rektorys K. (ed.)
Àííîòàöèÿ: This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics , first published in English in 1969. The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index. Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc. For researchers, students and teachers of mathematics and its applications.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1969
Êîëè÷åñòâî ñòðàíèö: 1369
Äîáàâëåíà â êàòàëîã: 06.12.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Improper integrals, double and triple 623—628
Improper integrals, involving a parameter 572—579
Indefinite integrals 486
Indefinite integrals, tables of irrational functions 516—529
Indefinite integrals, tables of rational functions 508—516
Indefinite integrals, tables of transcendental functions 541—548
Indefinite integrals, tables of transcendental functions, exponential 543—544
Indefinite integrals, tables of transcendental functions, hyperbolic 541—542
Indefinite integrals, tables of transcendental functions, inverse hyperbolic 548
Indefinite integrals, tables of transcendental functions, logarithmic 544—546
Indefinite integrals, tables of trigonometric functions containing, cosine 532—535
Indefinite integrals, tables of trigonometric functions containing, sine and cosine 535—539
Indefinite integrals, tables of trigonometric functions containing, sine only 529—532
Indefinite integrals, tables of trigonometric functions containing, tangent and cotangent 539—541
Indefinite integrals, tables, remarks 548—549
Independent variable 397
Indicatrix of Dupin 368
Indicial equation 793
Inequalities between real numbers 44—46
Inequalities, basic rules of 41
Inequalities, Cauchy's, Hoelder's, Minkowski's 46—47
Inertia, Sylvester's law of 105
Infimum (g.l.b.) 43
Infinite products 395—396
Infinite series of constant terms 381—395
Infinite series of constant terms, Convergence 381
Infinite series of constant terms, important formulae 392—395
Infinite series of constant terms, multiplication or product 391—392
Infinite series of functions 670—690
Initial line (polar coordinates) 216
Initial point of vector 264
Initial value problems in ordinary differential equations, applicability of different methods 1082—1083
Initial value problems in ordinary differential equations, notation 1065—1067
Initial value problems in ordinary differential equations, solution by Adams extrapolation 1076—1080
Initial value problems in ordinary differential equations, solution by Adams interpolation 1080—1082
Initial value problems in ordinary differential equations, solution by expansion in a power series 1069—1071
Initial value problems in ordinary differential equations, solution by perturbation method 1071—1073
Initial value problems in ordinary differential equations, solution by polygon method 1073—1075
Initial value problems in ordinary differential equations, solution by Runge — Kutta method 1075—1076
Initial value problems in ordinary differential equations, solution by successive approximations 1067—1069
inner product of functions 694—695
Inner product of vectors 266
Integers 41
Integrability of some systems 912
Integrability, Lebesgue (L) and Riemann (R) distinguished 596
Integral calculus of functions of 1 variable 486—601
Integral calculus of functions of 1 variable, approximate evaluation of definite integrals 592—595
Integral calculus of functions of 1 variable, basic integrals 486—489
Integral calculus of functions of 1 variable, definite integrals 550
Integral calculus of functions of 1 variable, definite integrals, table 579—584
Integral calculus of functions of 1 variable, indefinite integrals 486
Integral calculus of functions of 1 variable, indefinite integrals, table 508—549
Integral calculus of functions of 1 variable, integrals involving a parameter 572—579
Integral calculus of functions of 1 variable, integrals that can be rationalized 501—508
Integral calculus of functions of 1 variable, Lebesgue and Stieltjes integration 595—600
Integral calculus of functions of 1 variable, methods of integration 489—495
Integral calculus of functions of 1 variable, rational functions 495—500
Integral calculus of functions of 1 variable, Riemann (Cauchy — Riemann) integration 550
Integral calculus of functions of 1 variable, series expansions 588—592
Integral calculus of functions of 1 variable, survey of some important formulae 600—601
Integral calculus of functions of 2 or more variables 602—665
Integral calculus of functions of 2 or more variables, basic definitions and notation 602—605
Integral calculus of functions of 2 or more variables, surface integrals 638—645
Integral calculus of functions of 2 or more variables, survey of some important formulae 663—664
Integral calculus, applications in geometry and physics 645—663
Integral calculus, work done by a force moving along a curve 661
Integral curve 733
Integral equations 917—937
Integral equations in conformal mapping 989—991
Integral equations of first kind 936—937
Integral equations of Fredholm type 918
Integral equations of second kind 918
Integral equations of Volterra type 934—936
Integral equations with Cauchy kernel 934
Integral equations with degenerate kernels 923—925
Integral equations with Hilbert kernel 933
Integral equations with symmetric kernels 926—928
Integral equations with weak singularities 932—934
Integral test for convergence of a series 386
Integral transforms 1-dimensional finite 1136
Integral transforms 2- and multidimensional 1135—1136
Integral transforms, applications 1128—1130
Integral transforms, Fourier, Hankel, Laplace, Laplace — Carson, Mellin 1125
Integral transforms, fundamentally important results 1130—1135
Integral transforms, grammar for Laplace transforms 1134
Integral transforms, Laplace, applied to solving differential equations 1128—1130
Integral, curvilinear along a curve in space 633
Integral-valued random variables 1255—1257
Integrals of a differential equation 731
Integrals of Cauchy's type 949—953
Integrals of functions of complex variables 943—948
Integrals, able to be rationalized 501—508
Integrals, convergent and divergent 560
Integrals, curvilinear 628—637
Integrals, definite 550 605 618
Integrals, Definite, table 579—584
Integrals, double 605—618
Integrals, elliptic 589—592
Integrals, hyperelliptic 589
Integrals, improper 560—571 623—628
Integrals, indefinite 486
Integrals, Indefinite, table 508—549
Integrals, involving a parameter 572—579
Integrals, Legendre 590
Integrals, particular 731—732
Integrals, series expansions 588—592
Integrals, singular 737 871
Integrals, surface 638—645
Integrals, triple 618—628
Integrating factor in differential equation 750—751
Integration by differentiation with respect to a parameter 493—494 572
Integration by parts 489—490 557
Integration by substitution 491—493 558 615 621
Integration in an infinite interval 565
Integration of Fourier series 711—716
Integration of rational functions 495—500
Integration of series with variable terms (term-by-term integration) 672—673
Integration, Cauchy — Riemann 550
Integration, graphical 1214
Integration, Lebesgue 596
Integration, Riemann 550
Integration, Stieltjes 598
Intercepts on axes of coordinates 208
Interchange of limit and differentiation (integration) 668—669 672—673 678—679
Interior diameter of surface 638
Interpolation 1220—1244
Interpolation, applications to approximate solution of equations 1237—1239
Interpolation, arithmetic operations with approximate numbers 1242—1244
Interpolation, basic arguments 1225
Interpolation, Bessel formula 1233—1234
Interpolation, central-difference formulae 1230—1236
Interpolation, divided differences 1221—1222
Interpolation, double linear interpolation 1240—1242
Interpolation, equidistant (equal) arguments formula 1227—1229
Interpolation, Everett formula 1234—1236
Interpolation, Everett formula, written in Horner form 1235
Interpolation, Gauss's formula 1231—1232
Interpolation, general formulae 1220 1222—1225
Interpolation, general formulae, Lagrange's 1222—1223
Interpolation, general formulae, Newton's 1223—1225
Interpolation, iterative method 1237—1239
Interpolation, linear interpolation 1236—1237
Interpolation, regula falsi 1237
Interpolation, statement of the problem 1220
Interpolation, step of argument, step of table 1225
Interpolation, Stirling interpolation formula 1232—1233
Interpolation, tabular inaccuracy 1228—1229 1243
Interpolation, tabulation of functions of 2 variables 1239—1242
Intersection of 2 straight lines 210—211
Intersection of sets 83
Intersection of straight line with circle 220
Intervals (open, closed, infinite, ...) 397
Invariants 253 792
Inverse functions 400
Inverse functions, hyperbolic 130—132
Inverse functions, trigonometric 124—128
Inversion of a permutation 55
Involute of a catenary 185
Involute of a circle, construction and theorems 172—174
Involute of a curve 335—338
Involute, curtate and prolate 173
Irrational numbers 43
Irregular nets 1112
Irrotational vector field 273
Isoclines method of solving differential equations 1217—1218
Isogonal trajectories 762
Isogonal trajectories of a 1-parameter family of curves 342—343
Isoperimetric problems 1041
Iterative methods for calculation of eigenvalues of a matrix 1161—1164
Iterative methods of interpolation 1237—1239
Iterative methods, general, for solving algebraic and transcendental equations 1179—1180
Jacobi(an) determinants 456—458
Jacobi(an) elliptic functions 591—592
Jacobi(an) matrix 1180
Jacobi(an) polynomials 727—728
Jensen inequality 1252
Jordan block, matrix 98—99
Jordan curve 603
Jordan region 603
Joukowski aerofoils 979
Kantorovitch method for boundary value problems 1054—1056
Kelvin method of solving differential equations graphically 1218—1219
Kernel replacement 1141
Kirchhoff's formula 902
Kneser's theorem 773
Kochanski's rectification of circle 151—152
Kovalewski's theorem 862
Kronecker delta 282
Kuepper's conoid 262
L and R integration 596
l'Hospital's rule 380
l.u.b. (least upper bound) 43
Lagrange differential equation 757—758
Lagrange form of Taylor's theorem 435
Lagrange identity 268
Lagrange inequality 1169
Lagrange interpolation formula 1222—1223
Lagrange mean-value theorem 425—426
Lagrange method of undetermined coefficients (multipliers) 480—481
Lagrange — Charpit solution of Cauchy problem in 2 variables 875—876
Laguerre polynomials 728—729
Laplace differential equation 884
Laplace differential equation, Dirichlet problem in 886
Laplace differential equation, Neumann problem in 886
Laplace Integral transform 1125—1145
Laplace operator in vector analysis 275
Laplace transform 1125—1128
Laplace transform, applications to solving differential equations 1128—1130
Laplace — Gauss integral 580 589
Laplacian operator, properties 275
Large numbers, law of 1261—1262
Lattice nomograms 1189—1195
Latus rectum 218
Laurent series 958—961
Laurent series, essential singularity 960
Law of growth 200
Law of Large Numbers 1261—1262
Least squares method 1285—1321
Least squares method, adjustment of data by 1317—1320
Least squares method, best linear unbiassed estimates 1303—1304
Least squares method, best linear unbiassed estimates, variances and covariances 1306
Least squares method, boundary value problems 1061—1062
Least squares method, Calculus of observations 1315—1321
Least squares method, defining equations 1301
Least squares method, defining equations, matrix of rank smaller than p 1314—1315
Least squares method, defining equations, parameters restricted by linear constraints 1309—1310
Least squares method, Gauss — Markov theorem 1304
Least squares method, general problems 1301
Least squares method, normal distribution of random variables 1308—1309
Least squares method, normal equations 1304
Least squares method, parametric function 1303—1304
Least squares method, principle 1285—1288
Least squares method, residual sum of squares 1287
Least squares method, signs and notation 35—36
Least squares method, standard error estimates 1306—1307
Least squares method, standard error estimates, unconditioned observations 1319
Least squares method, weights 1310—1314
Least upper bound (l.u.b.) 43
Lebesgue and Riemann integration distinguished 596
Lebesgue and Stieltjes integration 595—600
Left-handed coordinate systems 234
Legendre differential equation 722 848
Legendre elliptic functions 591—592
Legendre integrals 590
Legendre polynomials 722—726 849
Lehmer's process 1175—1176
Leibniz rule for convergence of series 388
Leibniz rule for derivatives 422
Lemniscate of Bernoulli 189—190
Length of a vector 206
Length, integral calculus for curves in space 649
Length, integral calculus for plane curves 647
Level surfaces of scalar field 270
Liapunov theory 827—828
Liapunov type of surfaces 894
Liebmann iteration method 1121
Limacon of Pascal 191—192
Limit point 994
Limiting processes under the differentiation sign 669
Limiting processes under the integral sign 668—669
Limiting processes, interchange of 668
Limits 374 409—415 442 940
Limits of composite functions 410—411
Limits, from right or left 409—410
Limits, important 380—381
Limits, infinite 411—413
Line segment, division in a given ratio 207
Linear algebraic equations, equivalent systems 70—71
Linear algebraic equations, numerical methods of solving systems of 1146—1160
Linear concepts in solid analytic geometry 237—247
Linear differential equations 743 775
Linear differential equations of n-th order 775—780
Linear differential equations of second order with variable coefficients 790—798
Linear differential equations of second order with variable coefficients, oscillatory solutions 771
Linear differential equations, characteristic exponent 775
Linear differential equations, discontinuous solutions 798—801
Linear differential equations, Euler 784—785
Linear differential equations, Fuchsian type 793
Linear differential equations, fundamental equation 793—795
Linear differential equations, fundamental system of 778
Linear differential equations, homogeneous 743
Linear differential equations, homogeneous, corresponding to nonhomogeneous 776
Linear differential equations, homogeneous, periodic solutions to 774—775
Linear differential equations, homogeneous, with constant coefficients 782—786
Linear differential equations, indicial equation 793
Linear differential equations, nonhomogeneous 780—782
Linear differential equations, nonhomogeneous, with constant coefficients 786—790
Linear equations, algebraic, definition and properties 70—71
Linear equations, algebraic, definition and properties, solution without using determinants 71—73
Linear equations, algebraic, definition and properties, solution, using determinants 74—75
Linear function of a random variable 1254
Linear interpolation 1236—1237
Linear manifold 1002
Linear operator 1009
Linear regression functions 1288—1291
Linear segment division in a given ratio 207
Linear space 1001—1003
Lines of curvature on a surface 369
Lines of force 271
Liouville's formula 777
Ðåêëàìà