Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Rektorys K. (ed.) — Survey of Applicable Mathematics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Survey of Applicable Mathematics
Àâòîð: Rektorys K. (ed.)
Àííîòàöèÿ: This major two-volume handbook is an extensively revised, updated second edition of the highly praised Survey of Applicable Mathematics , first published in English in 1969. The thirty-seven chapters cover all the important mathematical fields of use in applications: algebra, geometry, differential and integral calculus, infinite series, orthogonal systems of functions, Fourier series, special functions, ordinary differential equations, partial differential equations, integral equations, functions of one and several complex variables, conformal mapping, integral transforms, functional analysis, numerical methods in algebra and in algebra and in differential boundary value problems, probability, statistics, stochastic processes, calculus of variations, and linear programming. All proofs have been omitted. However, theorems are carefully formulated, and where considered useful, are commented with explanatory remarks. Many practical examples are given by way of illustration. Each of the two volumes contains an extensive bibliography and a comprehensive index. Together these two volumes represent a survey library of mathematics which is applicable in many fields of science, engineering, economics, etc. For researchers, students and teachers of mathematics and its applications.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1969
Êîëè÷åñòâî ñòðàíèö: 1369
Äîáàâëåíà â êàòàëîã: 06.12.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Finite difference method, nets, principal types 1112—1113
Finite difference method, nets, refinement 1113
First and second curvatures 315—319
First and second integral mean value theorems 554
First integrals (differential equations) 766 828
Fitting of curves to empirical data 1285—1301
Fitting of curves to empirical data, linear regression function 1288—1291
Fitting of curves to empirical data, linear regression function with several independent variables 1297—1299
Fitting of curves to empirical data, nonlinear regression functions 1299—1301
Fitting of curves to empirical data, principle of least squares 1285—1288
Fixed polhode 165
Floquet's theorem 774
Flow round an obstacle 980—981
Flux of a vector, physical meaning 278
Focal radius of a hyperbola 157
Focus of a parabola 223
Focus of an ellipse 221
Folium of Descartes 188—189
Forced oscillations, damped 199—200
Forced oscillations, undamped 195—196
Forward differences 1226—1227
Fourier coefficients 698 703 1005
Fourier integral 713
Fourier integral transform 1125
Fourier method, partial differential equations 1098—1108
Fourier series 702—720
Fourier series in 2 variables 712—713
Fourier series in complex form 711
Fourier series, differentiation and integration of 711—712
Fourier series, expansions of some important functions 707—711
Fourier series, generalized 698
Fourier series, harmonic analysis 714—716
Fourier series, pointwise convergence 702—703
Fourier series, trigonometric 702—720
Fourier transforms 1125
Fourier transforms, n-dimensional 1136
Fourier — Bessel expansion 720—721
Fredholm's alternative 920 1016
Fredholm's equation 917
Fredholm's integral equations 917
Fredholm's integral equations with symmetric kernels 928
Fredholm's integral equations, approximate determination of first eigenvalue 1142—1145
Fredholm's integral equations, approximate solutions by Galerkin's method of moments 1141—1142
Fredholm's integral equations, approximate solutions by reduction to linear algebraic equations system 1138—1141
Fredholm's integral equations, approximate solutions by replacement of kernel by degenerate kernel 1141
Fredholm's integral equations, approximate solutions by Ritz's method 1142—1145
Fredholm's integral equations, approximate solutions by successive approximations (iterations) 1137—1138
Free oscillations 194 196
Free vectors 264
Frenet formulae 308—309
frequencies 1266—1267
Frequencies, cumulated in probit scale 1272
Fresnel's integrals 582 589
Frobenius's theorem 71
Fuchsian, differential equations 793
Functional analysis 997—1019
Functional determinants 456—457
Functionals in metric spaces 1007
Functionals, maximum and minimum along a curve 1022
Functionals, quadratic, minimum of 1045
Functions of a complex variable 938—970
Functions of a Complex variable, analytic 941
Functions of a Complex variable, analytic, continuation of 968
Functions of a Complex variable, analytic, natural domain of 969
Functions of a Complex variable, Cauchy type of integrals 949—953
Functions of a complex variable, Cauchy — Riemann equations 941—942
Functions of a Complex variable, derivative 941—942
Functions of a Complex variable, fundamental concepts 938—943
Functions of a Complex variable, holomorphic (regular) 941—942
Functions of a Complex variable, integrals of 943—948
Functions of a Complex variable, limit and continuity 940
Functions of a Complex variable, Liouville's theorem 961
Functions of a Complex variable, Logarithmic 965—970
Functions of a Complex variable, Plemelj formulae 951
Functions of a Complex variable, regular 941—942
Functions of a Complex variable, residue theorem and its applications 962—965
Functions of a Complex variable, series 953—961
Functions of a Complex variable, series, Laurent's 958—961
Functions of a Complex variable, series, Taylor's 957—958
Functions of a Complex variable, univalent (simple) in a domain 943
Functions of bounded variation 408
Functions of two or more variables 440—485
Functions of two or more variables, extremes 476—484
Functions of two or more variables, important formulae 484—485
Functions of two or more variables, introduction of new variables 470—476
Functions of type B 603 605
Functions, algebraic 402
Functions, analytic 941
Functions, approximation 436—438
Functions, bounded 404
Functions, composite 399 441
Functions, composite, differentiation of 420 450—452
Functions, concave, convex 429
Functions, continuity of 404 442
Functions, continuously extensible 443
Functions, decomposition of 400
Functions, decreasing 428
Functions, dependence of 458—461
Functions, derivatives 415—422
Functions, domain of definition of 397—398 440
Functions, elementary 402
Functions, elementary and higher transcendental 403
Functions, equicontinuous 668
Functions, erf x, erfc x 589
Functions, even and odd 404
Functions, exponential 403
Functions, graphical representation 432
Functions, Green's 811 892
Functions, holomorphic 941
Functions, homogeneous, Euler's theorem 454—455
Functions, hyperbolic 128—130
Functions, implicit 461 468
Functions, important formulae 438—439 484—485
Functions, increasing 428
Functions, inverse 400
Functions, inverse, hyperbolic 130—132
Functions, investigation of 431—434
Functions, limits of 409—415
Functions, limits of, computation by l'Hospital's rule 426—428
Functions, linear combination of 460
Functions, linearly dependent, independent 460
Functions, local dependency of 460
Functions, mean-value theorem 452—454
Functions, meromorphic 960
Functions, monotonic 429
Functions, new variables, introduction and transformations 470—476
Functions, normed (normalized) 695
Functions, normed (normalized), with weight function 697
Functions, odd and even 404
Functions, piecewise smooth in a region 443
Functions, points of inflexion 429
Functions, rational 402
Functions, real 397
Functions, Regression 1288—1291
Functions, regular 941
Functions, relative (local) maximum and minimum 430 476
Functions, smooth 417
Functions, square integrable 691
Functions, stationary points 431
Functions, transcendental 402—404
Functions, type B in a region 605
Functions, uniformly bounded 666
Functions, vanishing at infinity 885
Fundamental sequence 999
Fundamental sequence, solutions of Laplace and heat conduction equations 892 908
Fundamental sequence, system 778 819
g.l.b. (greatest lower bound) 43
Galerkin method for boundary value problems 1058—1061
Galerkin method of moments 1141—1142
Gamma function 584
Gamma function, graph and table 586
Gauss — Markov theorem 1304 1315
Gauss — Ostrogradski theorem 642—643
Gauss — Seidel iteration method 1155—1156
Gauss(ian) central difference interpolation formula 1231—1232
Gauss(ian) curvature on a surface 368
Gauss(ian) function 588
Gauss(ian) fundamental equation for surfaces 371
Gauss(ian) hypergeometric equation 727 797 850
Gauss(ian) law of error 1316
Gauss(ian) theorem 665
Gauss(ian) theorem egregium 371
Gauss(ian) theorem in vector notation 278—279
General integral (differential equations) 735 737 818
Generating curve 165
generating function for Bessel functions 717
Generating function for Legendre polynomials 724
Generating lines, generators 259—260
Geodesic curvature 372—375
Geometric mean 47
Geometric rigidity 1241
Geometric sequence 54
Geometry and physics: application of integral calculus 645—663
Geometry, analytic 205—262
Geometry, differential 298—373
Geometry, signs and notation 29—30
Gradient of a Scalar Field 270
Gradient of straight line 208
Gradient, curves on a surface 373
Graeffe method 1174—1178
Gram determinant 461
graph paper 1187—1189
Graph paper, rectangular, logarithmic, semilogarithmic, sine 1188
Graphical analysis 1213—1219
Graphical analysis, differentiation 1213—1214
Graphical analysis, integration 1214—1217
Graphical representation of samples 1273
Graphical solution of differential equations 1217—1219
Graphical solution of differential equations, isoclines method 1217—1218
Graphical solution of differential equations, Kelvin method 1218
Gravitational field, equation for particle moving in 857
Greatest lower bound (g.l.b.) 43
Green's formula regarding self-adjoint problems 806
Green's function 811 892
Green's function for special regions 893
Green's function in conformal mapping 984
Green's function, construction 812—814
Green's identities 644
Green's resolvent 815
Green's theorem 634
Groups, definitions 85
Growth, curves 200—204
Growth, law of 200
Growth, Robertson's law of 202—203
Guldin's rules 662
Half-angle formulae for trigonometric functions 112—113
Half-line directed, positive and negative 212
Hamilton nabla operator 272
Hankel functions 721
Harmonic analysis 714—716
Harmonic functions, properties of 890
Harmonic motion, simple 194
Harmonic oscillation curves 194
Harmonic series 382
Harmonic set of four points 229
Harmonics, spherical 725—727
Harnack theorems, first and second 890
Heat conduction equation 907—911
Heat conduction equation, Bessel functions applied to 1106
Heat conduction equation, first boundary value problem 1119—1121
Heat conduction equation, infinite circular cylinder 1105—1106
Heat conduction equation, rectangular regions 1103—1104
Heat conduction equation, stationary 1102—1103
Heat potentials 911
Heaviside operational calculus 1128
Heine's continuity definition 405
Helicoid 261 354
Helix, axis 311
Helix, circular 311
Helix, cylindrical 335
Helix, slope of gradient 312
Hermite differential equation 729 798
Hermite polynomials 729
Hermitian forms 100—106
Hermitian forms, congruent 106
Hermitian matrices 106
Heron's formula 118 133
Higher degree, hyperbolas 223—223
Higher degree, parabolas 223—224
Hilbert kernel 933
Hilbert space 1003—1005
Hilbert space, operators in, bounded 1013—1016
Hilbert space, operators in, unbounded 1016—1019
Hilbert — Schmidt theorem 928
histogram 1270
Hoelder's condition 949
Hoelder's condition, inequality 46 394
Holomorphic functions 941—942
Holomorphic functions, singular points 956—961
Homeomorphic image of a sphere 997
Homogeneous coordinates 225—226
Homogeneous functions, Euler's theorem 454—455
Homogeneous linear differential equations 743 776 782 867
Homographic mapping 973
Horner method for polynomials 60—61
Horner scheme applied to Everett formula 1235
Hyperbola 157—160 222—223
Hyperbola, as a conic section 227
Hyperbola, asymptotes of, and their directions 159
Hyperbola, branches 157
Hyperbola, conjugate 223
Hyperbola, conjugate diameter 159
Hyperbola, constructions 157—159
Hyperbola, eccentricity 157 222
Hyperbola, focal radius 157
Hyperbola, higher degree 163—165
Hyperbola, polar, equation for 230
Hyperbola, rectangular 223
Hyperbola, segment area 141
Hyperbola, standard equation for 222
Hyperbola, theorems 157—159
Hyperbolic equations 882 901—907
Hyperbolic equations, generalized solutions 901
Hyperbolic functions 128—130
Hyperbolic functions, inverse 130—132
Hyperbolic functions, relations between 129—130
Hyperbolic paraboloid 251
Hyperbolic point 364
Hyperbolic spiral 176
Hyperboloid(s) of one and of two sheets 248—250
Hyperboloid(s) of one and of two sheets, canonical and transformed equations 254
Hyperboloid(s) of revolution 248—249
Hyperboloid(s), asymptotic cone of two 252
Hyperelliptic integrals 589
Hypergeometric distribution 1255
Hypergeometric distribution, functions 727
Hypergeometric distribution, Gauss equation 727 797 850
Hypocycloids 168—172
Hypocycloids, simple, astroid 172
Hypocycloids, Steiner's 171—172
Identity element of a group 85
Identity matrix 88
Imaginary and real axes 49
Imaginary lines, as forming a conic section 227
Imaginary part of a complex number 48
Implication 40
Implicit functions 461 468
Implicit functions, geometrical interpretations 462
Implicit functions, theorems on 461—470
Improper integrals 560—571
Ðåêëàìà