|
|
 |
| Результат поиска |
Поиск книг, содержащих: Gap theorem
| Книга | Страницы для поиска | | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 339.D | | Mishra B. — Algorithmic algebra | 186; | | Zimand M. — Computational Complexity: A Quantitative Perspective | 39, 42, 49 | | Papadimitriou C.H. — Computational Complexity | 145 | | Ito K. — Encyclopedic Dictionary of Mathematics | 339.D | | Baker H.F. — Abel's Theorem and the Allied Theory Including The Theory of the Theta Functions | 32, 34, 93, 174 | | Ding-Zhu D., Ker-I K. — Problem solving in automata, languages, and complexity | 297 | | Leeuwen J.V. — Handbook of Theoretical Computer Science: Algorithms and Complexity | 172, 183 | | Hopcroft J.E., Ullman J.D. — Introduction to automata theory, languages, and computation | see Borodin’s gap theorem | | Bridges D.S. — Computability: A mathematical sketchbook | 101, 103 | | Leeuwen J. (ed.), Meyer A.R., Nivat M. — Algorithms and Complexity, Volume A | 172,183 | | Salomaa A. — Computation and automata | 148 | | Davis M., Sigal R., Weyuker E. — Computability, complexity, and languages: Fundamentals of theoretical computer science | 425—428 | | Zeidler E. — Oxford User's Guide to Mathematics | 691 | | Jones N.D. — Computability and complexity from a programming perspective | 311 |
|
|