|  |  | 
                
                    | Результат поиска |  
                    | Поиск книг, содержащих: Convolution of functions
 
 | Книга | Страницы для поиска |  | Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 492, 503f. |  | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 239 |  | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 164, 527, 530 |  | Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra | 75 |  | Krantz S.K. — Partial Differential Equations and Complex Analysis | 29 |  | Berberian S.K. — Fundamentals of Real Analysis | 458 |  | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 177, 495 |  | Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.6(21) |  | Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 424 |  | Egorov Yu.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 137 |  | Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 137 |  | Ya Helemskii A., West A. — Banach and locally convex algebras | 159, 167 |  | Амензаде Ю.А. — Теория упругости | 171, 174 |  | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 396 |  | Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 96, 100 |  | Percival D.B., Walden A.T. — Wavelet methods for time series analysis | 38 |  | Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 126, 740 |  | Treves F. — Topological Vector Spaces, Distributions And Kernels | 278 |  | Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 458 |  | Rosenberg S. — The Laplacian on a Riemannian manifold | 23 | 
 |  |