|
|
 |
| Результат поиска |
Поиск книг, содержащих: Convolution of functions
| Книга | Страницы для поиска | | Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 492, 503f. | | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 239 | | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 164, 527, 530 | | Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra | 75 | | Krantz S.K. — Partial Differential Equations and Complex Analysis | 29 | | Berberian S.K. — Fundamentals of Real Analysis | 458 | | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 177, 495 | | Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.6(21) | | Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 424 | | Egorov Yu.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 137 | | Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 137 | | Ya Helemskii A., West A. — Banach and locally convex algebras | 159, 167 | | Амензаде Ю.А. — Теория упругости | 171, 174 | | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 396 | | Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 96, 100 | | Percival D.B., Walden A.T. — Wavelet methods for time series analysis | 38 | | Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 126, 740 | | Treves F. — Topological Vector Spaces, Distributions And Kernels | 278 | | Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 458 | | Rosenberg S. — The Laplacian on a Riemannian manifold | 23 |
|
|