|
|
Результат поиска |
Поиск книг, содержащих: Chaotic attractor
Книга | Страницы для поиска | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 171 | Bazant Z.P., Cedolin L. — Stability of structures : elastic, inelastic, fracture, and damage theories | 190 | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 189, 192 | Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 396 | Gonzalez-Miranda J.M. — Synchronization and Control of Chaos: An Introduction for Scientists and Engineers | 18, 20, 27, 52, 182 | Liao X., Wang L., Yu P. — Stability of Dynamical Systems, Vol. 5 | 188, 189, 629, 654 | Lynch S. — Dynamical Systems with Applications Using Mathematica® | 156, 184, 317 | Mills D.L. — Nonlinear optics | 160 | West Th. (Ed) — Continuum Theory and Dynamical Systems, Vol. 149 | 1 | Sparrow C. — The Lorenz equations: bifurcation, chaos, and strange attractors | 5, 174, 176 | Hilborn R.C. — Chaos and nonlinear dynamics | 120 | Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 819 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 150, 152, 372 | Nayfeh A.H., Pai P.F. — Linear and Nonlinear Structural Mechanics | 5, 39, 124 | Haken H. — Information and Self-Organization | 16 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 425, 464 | Falconer K. — Fractal geometry: mathematical foundations and applications | 189, 192 |
|
|