|
|
 |
| Результат поиска |
Поиск книг, содержащих: Riesz lemma
| Книга | Страницы для поиска | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 43, 41—44 | | Searcid M. — Metric Spaces | 221 | | Wojtaszczyk P. — A Mathematical Introduction to Wavelets | 83 | | Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 43, 41—44 | | Wojtaszczyk P. — A Mathematical Introduction to Wavelets | 83 | | Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 319 | | Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 127 | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 43, 41—44 | | Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 150 | | Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 190 | | Kreyszig E. — Introductory functional analysis with applications | 78 | | Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 127 | | Kahane J.-P. — Fourier Series and Wavelets, Vol. 3 | 0.5, 5.2 | | Wald R.M. — General Relativity | 390—391 | | Chui C.K. — Wavelets: a mathematical tool for signal processing | 80 |
|
|