|
|
Результат поиска |
Поиск книг, содержащих: Kepler problem
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 89, 92 | Guillemin V., Sternberg S. — Geometric Asymptotics | 171 | Schweizer W. — Numerical quantum dynamics | 49 | Dittrich W., Reuter M. — Classical and quantum dynamics | 174 | Hand L.N., Finch J.D. — Analytical Mechanics | 130—133, 141—150, 196 (prob), 226, 228 (see also central force problem) | Hall G.R., Lee — Continuous dynamical systems | 6 | Stephani H., MacCallum M. (ed.) — Differential equations: Their solution using symmetries | 96, 99, 121, 238 | Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 34, 112, 474, 506 | McDuff D., Salamon D. — Introduction to Symplectic Topology | 15, 25 | Lanzcos C. — The Variational Principles of Mechanics | 242, 248 | Maimistov A.I., Basharov A.M. — Nonlinear optical waves | 397—399, 409, 412 | Audin M. — Spinning Tops: A Course on Integrable Systems | 4 | Born M. — Atomic Physics | 286, 304 | Haake F. — Quantum signatures of chaos | 364 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 173 | Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 146 | Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 216—219 | Guillemin V. — Geometric Asymptotics (Mathematical Surveys and Monographs Number 14) | 171 | Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics | 34 | Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics | (see Hydrogen atom(s)) | Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 47 | D'Inverno R. — Introducing Einstein's Relatvity | 192-5 | Grosche C., Steiner F. — Handbook of Feynman path integrals | see Coulomb problem | Padmanabhan T. — Cosmology and Astrophysics through Problems | 175 | Lanczos C. — Variational principles of mechanics | 242, 248 | Hermann R. — Differential geometry and the calculus of variations | 141 | Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 163 | Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 555 | Richards P.I. — Manual of Mathematical Physics | 155 | Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 58 | Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 215 | Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 339 | Miller W. — Symmetry and Separation of Variables | 231, 242 | Synge J.L. — Relativity: The Special Theory | 396ff, 426 | Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 80 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 393 | Meyer K.R. — Periodic Solutions of the N-Body Problem | 1, 11—12, 32—34, 37, 49, 51, 61, 88, 97, 106, 112—113, 122, 123, 130 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 173 | Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 280—284 |
|
|