Авторизация
Поиск по указателям
Walley P. — Statistical reasoning with imprecise probabilities
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Statistical reasoning with imprecise probabilities
Автор: Walley P.
Аннотация: This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1991
Количество страниц: 706
Добавлена в каталог: 10.12.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Reasoning 26—27 30—31 35—42
Reasoning, inductive (see Reasoning probabilistic)
Reasoning, Logic, inductive principles of (see Principles of rationality probabilistic)
Reasoning, standards of 26—27
Reasoning, statistical 406
Reasoning, versus rationality 26 (see also Rationality Inference statistical Extension natural Strategies assessment)
Reductionism (see Interpretations of probability and prevision reductionist)
Refinement (of a possibility space) 56—57 180—81 337
Regazzini, E. 549 555 642
Regret 508
Reichenbach, H. 480 534 562
Relevance (see Information relevant)
Relevant subset 381—86
Renyi, A. 549 553
Rescher, N. 514 515
Reward from action 160
Reward from action in elicitation 624 629—31
Rios, S. 47 506 507 528 536
Risk function 164
Robinson, G.K. 377 569 570 571 572 573
Robustness 5—6
Robustness of Bayesian inferences 6 256
Robustness of independence judgements 589
Robustness of inferences from conjugate priors 206
Robustness of likelihood function 431
Robustness of sampling models 356—57
Rockafellar, R.T. 511
Roles of probability-utility models 17
Roles of probability-utility models, constructive 21—26 30—31 35—42
Roles of probability-utility models, explanatory (descriptive) 17 19 116 17
Roles of probability-utility models, in decision 24—25 160—61
Roles of probability-utility models, in inference 21—22 26 30—31
Roles of probability-utility models, normative 27—35 41—42
Rorty, R. 500
Rosenblatt, J. 530 536
Rosenkrantz, R.D. 43 267 525 528 540 541
Ross, L. 483 488
Royden, H.L. 493 498 504 559 574 588
Rubin, H. 484
Russell, B. 44 499 532 543 562
Ryle, G. 19 481 565
Sachs, NJ. 480 536
Saddle point 613 619
Sage, A.P. 490
Sahlin, N. 44 49 507 530 535 538
Salmon, W.C. 480 562
Sample equivalent to prior information 221—22
Sample space 362
Sample space, continuous 328—33 435—40
Sampling models (see Models sampling)
Satisfaction level 240
Satisficing 239—40
Savage, L.J. 16 43 44 45 241 242 246 247 478 483 484 485 489 490 491 492 496 500 515 516 521 528 529 531 533 534 536 537 546 547 548 557 590 591 623 631
Schefe, P. 539
Schervish, M.J. 323 555 556 659
Schlaifer, R. 516 518 521 523 533 545 547
Schoemaker, P.J.H. 480 536
Schum, D.A. 490 538
Schwartz, J.J. 608
Scores 630
Scoring rules 247—48 630—31
Scoring rules as operational definition of prevision 247 533—34
Scoring rules, absolute error 248
Scoring rules, deterministic 534
Scoring rules, logarithmic 269 631
Scoring rules, proper 631
Scoring rules, quadratic 247 270 631
Scott, D. 516
Seidenberg, A. 515 601
Seidenfeld, T. 323 555 568 569 659 667
Self-conjugacy 66 87 90
Semigroup of transformations 139
Semigroup of transformations, Abelian 139 142—45
Sen, A.K. 529 530
Sensitivity analysis 6—7 44 105—08 171 253—58
Sensitivity analysis in decision problems 238
Sensitivity analysis in statistical inference 257—58 397 400
Sensitivity analysis, Bergerb’s account 256—57
Sensitivity analysis, models for independence 446—48 454—57
Sensitivity analysis, models for permutation-invariance 460—61
Sensitivity analysis, practical differences from behavioural theory 107—08 477
Sensitivity analysis, similarities to behavioural theory 107—08 257—58
Separating hyperplane theorems 611—12
Separating hyperplane theorems, strength of 505—06
Sequences of previsions 79—81 326
Sets, compact (see Compactness convex)
Sets, non-measurable 149—50
Sex 481
Shackle, G.L.S. 50 539
Shafer, G. ix 11 23 47 208 272 273 274 275 280 281 358 483 489 490 491 513 528 542 543 544 545 546 547 548 550 555 559 560 564
Shannon, C.E. 268 523 540
Shilov, G.E. 493
Shimony, A. 494 540
Shore, J.E. 540
Shortliffe, E.H. 49 50 490 536
Sierpinski, W. 506
Simon, H.A. 484 488 530
Skinner, B.F. 19 482
Skyrms, B. 537 560
Slovic, P. 480 488 501 510 536 659
Smets, P. 490
Smith, A.F.M. 538 591 647
Smith, C.A.B. ix 44 46 106 255 482 483 485 489 490 492 494 495 501 503 506 507 531 563
Smith, L.D. 481
Smokier, H.E. 488
Snell, E.J. 488 565
Solovay, R.M. 505
Space dual 609
Space dual, finite dimensional 609 612
Space dual, half 146 610
Space dual, linear 63 608
Space dual, locally convex 612
Space dual, parameter (see Parameter space possibility)
Spetzler, C.S. 510 516
Spiegelhalter, D.J. 49 50 490
Sprott, D.A. 568
Stael von Holstein, C.S. 510 516
Stakes function 629 630—31
Stallings, W. 538
Standard deviation, dependence on sample size 620—21 (see also Variance)
Standard deviation, upper and lower 617
State of affairs 54
State of affairs, observable versus theoretical 54—55 118
State of affairs, personal interest in 623 624
State of affairs, possible (see Possibility Statistics theories
Stein, C. 527
Stephanou, H.E. 490
Stock, M. 49
Stoer, J. 608 613
Stone, M. 527 528 556 566 567 568
Strassen, V. 49 497 502 563
Strategies assessment 8 35—42 286
Strategies assessment as justification for assessments 41—42
Strategies assessment in statistical problems 406
Strategies assessment, conflicting 214
Strategies assessment, criteria for selection 38—40
Strategies assessment, inference 21—22 406 424
Strategies assessment, types of 37—38 (see also Assessment Extension
Strategies assessment, updating 285—86 335—40 406 424
Studentb’s t-distribution (see Distribution)
Studentb’s t-Subjectivity (see Objectivity)
Subspace, linear 608
Sudderth, W.D. 374 390 495 496 502 527 557 566 567 568 571 573 575 579 590 591 602
Suppes, P. 44 46 480 485 489 493 499 514 515 516 521 529 533 534 563 564 600 660
Support of gamble 344 363
Supremum 58
Symmetry, in information 227 458 461—62
Szolovits, P. 490
Tanaka, H. 538
Taxation, capital gains 95—96
Taxation, models for 96 604
Taylor, C. 481
Taylor, S.J. 559 588
Teller, P. 545 550
Thole, U. 539
Thomas, H. 510
Thorp, J. 47
Thumbtack (drawing pin) for imprecise chances 433—34 454— 55 467—68
Thumbtack (drawing pin) for prior-data conflict 225—26
Thumbtack (drawing pin) for uncertain perception 339
Thumbtack (drawing pin) objectivity of 112—13 465—66
Thumbtack (drawing pin) or near-ignorance 4 218—20
Thumbtack (drawing pin) robust Bernoulli model 467—71
Thumbtack (drawing pin) standard Bernoulli model 217 467 470
Thumbtack (drawing pin), probability models 36—37
Tiao, G.C. 43 228 229 233 500 525 526 528 538 564 567 568 583 584
Tolman, E.C. 481
topology 609—10
Topology, supremum-norm 609
Topology, weak 145—46 609—10
Tractability of models 105 116—17 216 252
Transitivity of preferences 28—29 154 247
Translation-invariance (see Invariance Trials)
Tribus, M. 267 487 534 540 542 544
Tuomela, R. 481 562 563
Tversky, A. 485 488 499 500 501 534 536 537 659 660
Ulam, S. 498 557
Ultrafilter 101 147—49
Ultrafilter theorem 148 149
Unanimity rule 188 214
Uncertainty 209
Uncertainty, degree of 211—12 266 617
Uniform distribution (see Distribution uniform Density improper uniform)
Updating 285—86 334—40
Updating, a general strategy 337—38
Updating, coherent 317—19 321—22
Updating, difficulties in 334—37
Urn, drawings from 462—63
Utility 17—19 24—26 58—61
Utility function, identified with gamble 25 160—61
Utility, construction of scale 59—60
Utility, expected 18 24 162
Utility, imprecise 165—66 490
Utility, precise (linear) 25—26 59—61 64 115 160
Utility, quadratic 58 231 619
Utility, unbounded 58 527
Vacuous prevision (see Prevision vacuous)
Vagueness 245—46 261 519 Indeterminacy)
Valentine, E.R. 483
Values 17—19 (see also Utility)
Variable, continuous 330—33 436—40
Variable, random (see Gamble)
Variance determinate (see Determinacy indeterminate)
Variance determinate, choice between 159—60
Variance determinate, equivalence of 156
Variance determinate, literature on 42—50
Variance determinate, need for posterior measures 22 110 252 388
Variance determinate, types of 113—14 (see also Beliefs Indeterminacy Prevision Probability)
Variance of a gamble precise 617 619—20
Variance of a gamble precise, upper and lower 617—21
Variance of a sample 373
Vasely, W.E. 532
Venn, J. 43 479 480 526
Verification procedure 54 118
Verification procedure, approximate 119 (see also Definition operational)
Vickers, J.M. 485 491
Villegas, C. 228 515 516 525 532 568
von Mises, R. 44 351 480 528 536 564
von Neumann, J. 490 492 613
von Winterfeldt, D. 43 480 488 492 501 510 536 538 546 623
Wallace, D.L. 487 500 536 565 569
Walley, P. vii viii 44 46 47 49 478 479 488 489 495 496 497 500 502 503 508 510 512 514 515 516 517 518 519 520 528 529 535 536 537 539 542 543 545 551 559 563 564 565 568 576 582 587 589 590 591 592
Wallsten, T.S. 510 539 648
Waterman, D.A. 49
Watson, J.B. 19 482
Watson, S.R. 50 262 263 264 536 538 539
Weatherford, R. 479
Weaver, W. 523 540
Weinberg, S. 648
Weiss, J.J. 50 262 538 672
Weisweiller, R. 495
Well-groundedness (of probability assessments) 35 113—14
White, A.R. 481 490 514
Whittle, P. 493 497
Wilkinson, G.N. 568
Williams, P.M. ix 13 46 106 414 489 491 493 495 499 502 503 506 519 540 542 543 544 548 549 558 561 577 614 642 643
Williamsb’ theorem 643
Winkler, R.L. 501 510 511 521 533 536 623 632 638
Winsten, C.B. 558 646
Witness, unreliable 274 276
Witzgall, C. 608 613
Wolfenson, M 47 507 517 600
Wolpert, R.L. 500 536 569 570 573 583 584
Wong, Y. — C. 506
Yates, F. 569 571
Yates, J.F. 48
Ylvisaker, D. 518
Zabell, S. 547 559 560
Zadeh, L.A. 50 261 265 519 538 539
Zanotti, M. 489
Zellner, A. 228 229 525 528 538 584
Zidek, J.V. 527 568
Zimmerman, H.J. 539
Zukowski, L.G. 48
Zwick, R. 672
Zysno, P. 539
Реклама