Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Walley P. — Statistical reasoning with imprecise probabilities
Walley P. — Statistical reasoning with imprecise probabilities



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Statistical reasoning with imprecise probabilities

Автор: Walley P.

Аннотация:

This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1991

Количество страниц: 706

Добавлена в каталог: 10.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Reasoning      26—27 30—31 35—42
Reasoning, inductive      (see Reasoning probabilistic)
Reasoning, Logic, inductive principles of      (see Principles of rationality probabilistic)
Reasoning, standards of      26—27
Reasoning, statistical      406
Reasoning, versus rationality      26 (see also Rationality Inference statistical Extension natural Strategies assessment)
Reductionism      (see Interpretations of probability and prevision reductionist)
Refinement (of a possibility space)      56—57 180—81 337
Regazzini, E.      549 555 642
Regret      508
Reichenbach, H.      480 534 562
Relevance      (see Information relevant)
Relevant subset      381—86
Renyi, A.      549 553
Rescher, N.      514 515
Reward from action      160
Reward from action in elicitation      624 629—31
Rios, S.      47 506 507 528 536
Risk function      164
Robinson, G.K.      377 569 570 571 572 573
Robustness      5—6
Robustness of Bayesian inferences      6 256
Robustness of independence judgements      589
Robustness of inferences from conjugate priors      206
Robustness of likelihood function      431
Robustness of sampling models      356—57
Rockafellar, R.T.      511
Roles of probability-utility models      17
Roles of probability-utility models, constructive      21—26 30—31 35—42
Roles of probability-utility models, explanatory (descriptive)      17 19 116 17
Roles of probability-utility models, in decision      24—25 160—61
Roles of probability-utility models, in inference      21—22 26 30—31
Roles of probability-utility models, normative      27—35 41—42
Rorty, R.      500
Rosenblatt, J.      530 536
Rosenkrantz, R.D.      43 267 525 528 540 541
Ross, L.      483 488
Royden, H.L.      493 498 504 559 574 588
Rubin, H.      484
Russell, B.      44 499 532 543 562
Ryle, G.      19 481 565
Sachs, NJ.      480 536
Saddle point      613 619
Sage, A.P.      490
Sahlin, N.      44 49 507 530 535 538
Salmon, W.C.      480 562
Sample equivalent to prior information      221—22
Sample space      362
Sample space, continuous      328—33 435—40
Sampling models      (see Models sampling)
Satisfaction level      240
Satisficing      239—40
Savage, L.J.      16 43 44 45 241 242 246 247 478 483 484 485 489 490 491 492 496 500 515 516 521 528 529 531 533 534 536 537 546 547 548 557 590 591 623 631
Schefe, P.      539
Schervish, M.J.      323 555 556 659
Schlaifer, R.      516 518 521 523 533 545 547
Schoemaker, P.J.H.      480 536
Schum, D.A.      490 538
Schwartz, J.J.      608
Scores      630
Scoring rules      247—48 630—31
Scoring rules as operational definition of prevision      247 533—34
Scoring rules, absolute error      248
Scoring rules, deterministic      534
Scoring rules, logarithmic      269 631
Scoring rules, proper      631
Scoring rules, quadratic      247 270 631
Scott, D.      516
Seidenberg, A.      515 601
Seidenfeld, T.      323 555 568 569 659 667
Self-conjugacy      66 87 90
Semigroup of transformations      139
Semigroup of transformations, Abelian      139 142—45
Sen, A.K.      529 530
Sensitivity analysis      6—7 44 105—08 171 253—58
Sensitivity analysis in decision problems      238
Sensitivity analysis in statistical inference      257—58 397 400
Sensitivity analysis, Bergerb’s account      256—57
Sensitivity analysis, models for independence      446—48 454—57
Sensitivity analysis, models for permutation-invariance      460—61
Sensitivity analysis, practical differences from behavioural theory      107—08 477
Sensitivity analysis, similarities to behavioural theory      107—08 257—58
Separating hyperplane theorems      611—12
Separating hyperplane theorems, strength of      505—06
Sequences of previsions      79—81 326
Sets, compact      (see Compactness convex)
Sets, non-measurable      149—50
Sex      481
Shackle, G.L.S.      50 539
Shafer, G.      ix 11 23 47 208 272 273 274 275 280 281 358 483 489 490 491 513 528 542 543 544 545 546 547 548 550 555 559 560 564
Shannon, C.E.      268 523 540
Shilov, G.E.      493
Shimony, A.      494 540
Shore, J.E.      540
Shortliffe, E.H.      49 50 490 536
Sierpinski, W.      506
Simon, H.A.      484 488 530
Skinner, B.F.      19 482
Skyrms, B.      537 560
Slovic, P.      480 488 501 510 536 659
Smets, P.      490
Smith, A.F.M.      538 591 647
Smith, C.A.B.      ix 44 46 106 255 482 483 485 489 490 492 494 495 501 503 506 507 531 563
Smith, L.D.      481
Smokier, H.E.      488
Snell, E.J.      488 565
Solovay, R.M.      505
Space dual      609
Space dual, finite dimensional      609 612
Space dual, half      146 610
Space dual, linear      63 608
Space dual, locally convex      612
Space dual, parameter      (see Parameter space possibility)
Spetzler, C.S.      510 516
Spiegelhalter, D.J.      49 50 490
Sprott, D.A.      568
Stael von Holstein, C.S.      510 516
Stakes function      629 630—31
Stallings, W.      538
Standard deviation, dependence on sample size      620—21 (see also Variance)
Standard deviation, upper and lower      617
State of affairs      54
State of affairs, observable versus theoretical      54—55 118
State of affairs, personal interest in      623 624
State of affairs, possible      (see Possibility Statistics theories
Stein, C.      527
Stephanou, H.E.      490
Stock, M.      49
Stoer, J.      608 613
Stone, M.      527 528 556 566 567 568
Strassen, V.      49 497 502 563
Strategies assessment      8 35—42 286
Strategies assessment as justification for assessments      41—42
Strategies assessment in statistical problems      406
Strategies assessment, conflicting      214
Strategies assessment, criteria for selection      38—40
Strategies assessment, inference      21—22 406 424
Strategies assessment, types of      37—38 (see also Assessment Extension
Strategies assessment, updating      285—86 335—40 406 424
Studentb’s t-distribution      (see Distribution)
Studentb’s t-Subjectivity      (see Objectivity)
Subspace, linear      608
Sudderth, W.D.      374 390 495 496 502 527 557 566 567 568 571 573 575 579 590 591 602
Suppes, P.      44 46 480 485 489 493 499 514 515 516 521 529 533 534 563 564 600 660
Support of gamble      344 363
Supremum      58
Symmetry, in information      227 458 461—62
Szolovits, P.      490
Tanaka, H.      538
Taxation, capital gains      95—96
Taxation, models for      96 604
Taylor, C.      481
Taylor, S.J.      559 588
Teller, P.      545 550
Thole, U.      539
Thomas, H.      510
Thorp, J.      47
Thumbtack (drawing pin) for imprecise chances      433—34 454— 55 467—68
Thumbtack (drawing pin) for prior-data conflict      225—26
Thumbtack (drawing pin) for uncertain perception      339
Thumbtack (drawing pin) objectivity of      112—13 465—66
Thumbtack (drawing pin) or near-ignorance      4 218—20
Thumbtack (drawing pin) robust Bernoulli model      467—71
Thumbtack (drawing pin) standard Bernoulli model      217 467 470
Thumbtack (drawing pin), probability models      36—37
Tiao, G.C.      43 228 229 233 500 525 526 528 538 564 567 568 583 584
Tolman, E.C.      481
topology      609—10
Topology, supremum-norm      609
Topology, weak      145—46 609—10
Tractability of models      105 116—17 216 252
Transitivity of preferences      28—29 154 247
Translation-invariance      (see Invariance Trials)
Tribus, M.      267 487 534 540 542 544
Tuomela, R.      481 562 563
Tversky, A.      485 488 499 500 501 534 536 537 659 660
Ulam, S.      498 557
Ultrafilter      101 147—49
Ultrafilter theorem      148 149
Unanimity rule      188 214
Uncertainty      209
Uncertainty, degree of      211—12 266 617
Uniform distribution      (see Distribution uniform Density improper uniform)
Updating      285—86 334—40
Updating, a general strategy      337—38
Updating, coherent      317—19 321—22
Updating, difficulties in      334—37
Urn, drawings from      462—63
Utility      17—19 24—26 58—61
Utility function, identified with gamble      25 160—61
Utility, construction of scale      59—60
Utility, expected      18 24 162
Utility, imprecise      165—66 490
Utility, precise (linear)      25—26 59—61 64 115 160
Utility, quadratic      58 231 619
Utility, unbounded      58 527
Vacuous prevision      (see Prevision vacuous)
Vagueness      245—46 261 519 Indeterminacy)
Valentine, E.R.      483
Values      17—19 (see also Utility)
Variable, continuous      330—33 436—40
Variable, random      (see Gamble)
Variance determinate      (see Determinacy indeterminate)
Variance determinate, choice between      159—60
Variance determinate, equivalence of      156
Variance determinate, literature on      42—50
Variance determinate, need for posterior measures      22 110 252 388
Variance determinate, types of      113—14 (see also Beliefs Indeterminacy Prevision Probability)
Variance of a gamble precise      617 619—20
Variance of a gamble precise, upper and lower      617—21
Variance of a sample      373
Vasely, W.E.      532
Venn, J.      43 479 480 526
Verification procedure      54 118
Verification procedure, approximate      119 (see also Definition operational)
Vickers, J.M.      485 491
Villegas, C.      228 515 516 525 532 568
von Mises, R.      44 351 480 528 536 564
von Neumann, J.      490 492 613
von Winterfeldt, D.      43 480 488 492 501 510 536 538 546 623
Wallace, D.L.      487 500 536 565 569
Walley, P.      vii viii 44 46 47 49 478 479 488 489 495 496 497 500 502 503 508 510 512 514 515 516 517 518 519 520 528 529 535 536 537 539 542 543 545 551 559 563 564 565 568 576 582 587 589 590 591 592
Wallsten, T.S.      510 539 648
Waterman, D.A.      49
Watson, J.B.      19 482
Watson, S.R.      50 262 263 264 536 538 539
Weatherford, R.      479
Weaver, W.      523 540
Weinberg, S.      648
Weiss, J.J.      50 262 538 672
Weisweiller, R.      495
Well-groundedness (of probability assessments)      35 113—14
White, A.R.      481 490 514
Whittle, P.      493 497
Wilkinson, G.N.      568
Williams, P.M.      ix 13 46 106 414 489 491 493 495 499 502 503 506 519 540 542 543 544 548 549 558 561 577 614 642 643
Williamsb’ theorem      643
Winkler, R.L.      501 510 511 521 533 536 623 632 638
Winsten, C.B.      558 646
Witness, unreliable      274 276
Witzgall, C.      608 613
Wolfenson, M      47 507 517 600
Wolpert, R.L.      500 536 569 570 573 583 584
Wong, Y. — C.      506
Yates, F.      569 571
Yates, J.F.      48
Ylvisaker, D.      518
Zabell, S.      547 559 560
Zadeh, L.A.      50 261 265 519 538 539
Zanotti, M.      489
Zellner, A.      228 229 525 528 538 584
Zidek, J.V.      527 568
Zimmerman, H.J.      539
Zukowski, L.G.      48
Zwick, R.      672
Zysno, P.      539
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте