Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Walley P. — Statistical reasoning with imprecise probabilities
Walley P. — Statistical reasoning with imprecise probabilities



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistical reasoning with imprecise probabilities

Àâòîð: Walley P.

Àííîòàöèÿ:

This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 706

Äîáàâëåíà â êàòàëîã: 10.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Daroczy, Z      523 540
Darwall, S.L.      484 485 500
DATA      (see Observation)
Davis, M.      507
Dawid, A.P.      361 488 500 527 565 566 568 587 590 591 592
Day, J.P.      514
Day, M.M.      504 505 608
de Finetti, B.      viii ix 3 16 20 43 44 45 54 55 57 66 81 86 111 138 241 242 243 246 247 282 295 320 321 322 326 327 361 365 443 460 463 465 466 478 479 480 481 482 483 484 486 487 488 489 490 491 493 494 496 497 498 499 500 501 503 507 510 511 512 513 515 516 528 531 532 533 534 537 539 541 545 546 548 549 552 553 554 555 556 557 558 559 560 566 567 580 585 586 587 589 590 591 592 601 624 632 644
De Finettib’s elimination of aleatory probabilities      111—13 361 465—67
De Finettib’s fundamental theorem of probability      138
De Finettib’s representation theorem      463
De Morgan, A.      43 479
De Sousa, R.      510 537
Death risk      352 354—55 360
Decision      24—26 160—66 235—41
Decision rules, Bayes      162 164
Decision rules, minimax regret      508
Decision rules, P-minimax      163—64 240 269—70 619 630
Decision rules, statistical      164—65 240
Decision, Bayesian theories      43 164—65 237—38
Decision, experimental studies      48 116—17
Decision, frequentist theory      164—65
Decision, fuzzy analysis      263
Decision, role of probability models in      24—25 161
Decision, sensitivity analysis      24 44 238 256
Decision, statistical      164—65
Decision, strategies for      24—25 238—41
Decision, versus inference      21 109—10 572
Decision, with imprecise utilities      165—66
Decision, with precise utilities      160—65
Decisiveness      235—36 243
Definition, operational      20 102—03 243 247 624
DeGroot, M.H.      43 45 241 516 518 523 528 532 647
Dempster, A.P.      11 44 47 182 208 272 273 274 275 281 358 479 489 511 513 536 542 543 544 545 564 568
Dempster-Shafer theory      (see Belief functions)
Dempsterb’s rule of combination      275—81
Dempsterb’s rule of conditioning      278—81
Dennett, D.C.      18 481 482 491 529
Density function      (see also Distribution)
Density function, as a reference prior      233—34 583
Density function, behavioural meaning      230—31
Density function, conditional      331
Density function, conjugate      (see Density function natural-conjugate)
Density function, dependence on sampling model      229 231—32 374—76 583
Density function, for a chance      228—29
Density function, for a location parameter      229—34 370—72 376 420—21
Density function, for a scale parameter      372—73 (see also Density function improper)
Density function, for location-scale parameters      232 373 383
Density function, generates incoherent inferences      231 369—77
Density function, Haldane      223 228 374—76 417—18
Density function, improper      228 229—30 369
Density function, joint      331—32 450
Density function, marginal      331 393
Density function, motivations for      234—35
Density function, natural-conjugate      205
Density function, noninformative      226—35
Density function, objections to      230—34
Density function, on finite set      227—28 267
Density function, on integers      310
Density function, on positive integers      97—98 143—44 311 321—22 326 365 450
Density function, on real line      99—100 136 144 420 improper)
Density function, on unit interval      98—99 220 223 228 437—39
Density function, posterior      393
Density function, posterior prior      (see Prevision prior)
Density function, prior Studentb’s      373 382—83
Density function, regular      437—39
Density function, relation to proper previsions      233 376 399 417—18 420—21
Density function, sampling      369 393 436—37
Density function, uniform      (see Density function improper uniform)
Density function, uniform on bounded interval      372 384—85
Density function, uniform on surface of a sphere      328
Dependence      (see also Independence)
Dependence, degree of      589
Dependence, non-negative      473
DeRobertis, L.      498 517 535 536 576
Desirability      150—53 155 156—60 614 16
Desirability, almost      151—53
Desirability, axioms for, refer to Index of axioms B      287 294
Desirability, behavioural interpretation      60 151 614
Desirability, correspondence with conditional previsions      615—16
Desirability, correspondence with linear previsions      158
Desirability, correspondence with lower previsions      64 156 615
Desirability, correspondence with preference      153
Desirability, more fundamental than prevision      159—60
Desirability, real      160 614—16
Desirability, role in elicitation      152 169 171—72
Desirability, strict      155
Determinacy      (see Indeterminacy)
Determinism      354—55 358—59
Dewey, J.      484
Diaconis, P.      518 544 547 559 560
Dias, P.      540
Dickey, J.M.      44 499 528 536 537 568
Direct inference      (see Principles of rationality direct
Disagreement      (see Conflict)
Dispositions behavioural      18—20 61—63
Dispositions behavioural, beliefs      285—86 (see also Beliefs)
Dispositions behavioural, physical      (see Chance to update)
Distribution beta      205 218 395
Distribution beta with unknown variance      355—57 373 382—83
Distribution beta, binomial      374—75 395
Distribution beta, degenerate      149 209
Distribution beta, double exponential      384
Distribution beta, geometric      375—76
Distribution beta, imprecise      398—99 399—400 401—03 405 423—24 524 620
Distribution beta, maximum entropy      266—72
Distribution beta, noninformative      (see Density function noninformative)
Distribution beta, Normal      370—72
Distribution beta, posterior      (see Prevision posterior)
Distribution function      130
Distribution function, upper and lower      130 203—05
Distribution, uniform, upper and lower      200—02
Domain of conditional previsions      289 291 293
Domain of lower prevision      61
Domain of statistical model      363 388 393
Domain of upper prevision      70
Dominance      78 132—35
Donnell, M.L.      50 262 538 672
Drawing pin      (see Thumbtack)
Dretske, F.      482
Dubins, L.E.      313 496 528 552 554 557
Dubois, D.      538 669
Duda, R.O.      49
Dunford, N.      608
Dunsmore, I.R.      523
Dutch book      29 (see also Loss)
Economics, examples of difference between buying and selling prices      65 72 94—95 95—97 602—07 627—28
Edwards, A.W.F.      524 568
Edwards, W.      43 44 480 488 492 501 510 528 533 536 538 546 623
Eells, E.      485
Einhorn, H.J.      44 48 480 532 535 536
Elicitation      167—74
Elicitation of beliefs about football game      172 73 175—77 632—33
Elicitation, Bayesian procedures      173—74
Elicitation, general procedure      167—76
Elicitation, incomplete      104 106 173 215—17
Elicitation, operational procedures      173 622—31
Elicitation, using structural judgements      474—76
Elicitation, versus assessment      14—15 167 Judgement Measurement
Ellis, R.L.      43 480 526
Ellsberg, D.      48 530 532
Elster, J.      484 485 532
Embedding principle      (see Principles of rationality embedding)
entropy      211 266
Entropy for continuous distributions      271
Entropy upper and lower      541
Envelopes of Bayesian models      397—400 402—03 405 418—19 429—30 432
Envelopes of Bayesian models of coherent linear collections      308 312—13 316 327 349 414—15 642—44
Envelopes of Bayesian models of countably additive measures      327 454
Envelopes of Bayesian models of linear previsions      89 132—36
Envelopes of Bayesian models, independent lower      446—48 454—57
Envelopes of Bayesian models, of lower previsions      78 348—49
Envelopes of Bayesian models, of noninformative priors      223—24
Envelopes of Bayesian models, of variances      618 (see also Sensitivity analysis)
Envelopes of Bayesian models, relation to coherence      134—35 145
Envelopes of Bayesian models, relation to natural extension      136 414
Epstein, R.A.      602
Equivalence judgements      472
Equivalence of models for uncertainty      156 159—60
Estimation interval      (see Confidence intervals Credible
Events      54 81
Events of probability zero      306—07 328—34 436—40
Events, as zero-one valued gambles      81 (see also Gamble)
Events, conditioning      284 289
Events, exchangeable      460—67
Events, independent      443—48
Events, irrelevant      444
Events, non-negatively dependent      473
Events, non-negatively relevant      473
Events, observable      118 465—66
Events, permutable      458—59
Events, probable      188—91 262
Events, standard      196
Events, sure      54
evidence      (see Information)
Exchangeability      361 460—67
Exchangeability as a direct judgement of desirability      472
Exchangeability for infinite sequence of events      463—66
Exchangeability, grounds for      461—62 466
Exchangeability, stronger than permutability      461—62
Expectation      128—29 493 694
Experiments auxiliary      196
Experiments auxiliary binary      (see Bernoulli models exchangeable)
Experiments auxiliary binary, independent      448
Experiments auxiliary binary, permutable      457 (see also Trials)
Expert Systems      49—50
Expert systems for assessing probabilities      40 512
Explanation for actions, psychological      17—19
Explanation for actions, versus prediction      360 466
Extension of conditional and marginal previsions      314—17 413
Extension of conditional and marginal previsions rom a field      125 127—32
Extension of conditional and marginal previsions to conditional previsions      317—33 412 615—16 639—41
Extreme point      146 613
Extreme points of J((P)      146—48 159
Extreme points of J((P), computation      175 511
Extreme points of J((P), examples      147
Extreme points of J((P), existence      146 148
Extreme points of J((P), lower envelopes of      147 149 429 432
Family, location      (see Parameter location)
Farquhar, P.H.      492
Feagans, T.B.      538
Feddersen, A.P.      383
Feller, W.      526 541 591
Fellner, W.      44 47 48 520 521 535 536
Ferguson, T.S.      508 509
Field      90
Field, extension from      125 127—32
Filter      100—01 131 147—49 190 310
Fine, T.L.      ix 44 45 46 47 49 478 479 480 487 489 491 496 501 507 514 515 516 517 525 526 528 531 532 533 539 540 541 542 543 547 562 563 564 565 586 587 588 589 591 592 600
Finite additivity      (see Additivity Football)
Finite additivity, examples of assessments      172 175 179 180 181 182 185 187 190 194 198 199 201 202 270 288 634
Finite additivity, World Cup experiment      632—38
Fischhoff, B.      480 510 662
Fishbum, P.C.      46 241 489 490 499 507 515 521 531 532 533 536
Fisher, R.A.      44 232 362 373 382 483 488 521 522 524 526 528 536 562 568 569 570 571
Fodor, J.A.      482 491
Folks, J.L.      536
Folks, L.      386 483 558 559 562 569 572 573 584
Forsyth, B.      672
Forsyth, R.      49 538
Fraser, D.A.S.      373 501 568 570 571 585
Freedman, D.A.      579
Freeling, A.N.S.      50 263 538 539 540
French, S.      516 684
Frequency, apparent convergence      464—65
Frequency, convergence      351 354 464
Frequency, divergence      80—81 358—59 469 frequency)
Frequency, relative      219 350—52 357—58
Fubinib’s theorem      588
Function      (see Belief function Density etc.)
Functional bivariate      613 618
Functional bivariate, continuous      609 611—13
Functional bivariate, evaluation      609
Functional bivariate, linear      609
Functional bivariate, positive      89 609
Functional bivariate, variance      618
Fuzzy sets      50 261—66
Gain in football experiment      635 637—38
Gain in the stock market      72
Gain of bookmakers      95 627—28
Gain, avoiding      87
Gain, from betting on horses      603—05
Gain, sure      64
Gaines, B.R.      538 539
Gale, D.      511 612
Gale, W.A.      490
Gamble      58
Gamble, admissible      161
Gamble, Bayes      162
Gamble, called off      56 184—85 284
Gamble, contingent      284
Gamble, desirable      (see Desirability indeterminate)
Gamble, j-measurable      129
Gamble, marginal      68 289
Gamble, maximal      161
Gamble, measurable      291
Gamble, nondesirable      474
Gamble, P-minimax      163
Gamble, permuted      457
Gamble, simple      129 174
Gamble, super-relevant      381
Gamble, two-stage      291 294 303—04
Gamble, undesirable      474
gambling      (see Betting)
Gardenfors, P.      44 49 507 530 535 538
Gardner, H.      482
Gauss, C.F.      527 567 569
Geisser, S.      521 526
Generalized Bayes rule (GBR)      (see Bayes rule generalized)
Geometric representation of probability models      176—77 494 512
Geometry, Euclidean      249—50
Gerber, H.U.      498
Giere, R.N.      480 562
Giertz, M.      539
Giles, R.      47 499 500 503 506 510 519 539
Gillies, D.A.      480 562
Giron, F.J.      47 506 507 528 536
Goel, P.K.      523
Goldstein, M.      536 546 547 549 552 555 557 560 592
Good, I.J.      ix 43 44 46 255 256 257 478 479 481 484 485 487 488 500 501 509 519 523 524 525 528 529 534 535 536 537 538 540 551 579 589 590 591 592
Granirer, E.      504
Graybill, F.A.      569
Greenleaf, F.P.      504
Griffiths, A.P.      481
Grize, Y. — L.      49 592
Gurevich, B.L.      493
Hacking, I.      478 479 480 481 482 489 491 493 526 543 545 547 559 562 563 568 569 592
Hagen, O.      492
Hahn — Banach      138—39
Hahn — Banach as lower envelope of Bayesian posteriors      429 432
Hahn — Banach as lower envelope of linear extensions      136 316 414 418 429 432
Hahn — Banach extensions      138—39
Hahn — Banach for imprecise sampling models      430—34 440—41
Hahn — Banach in betting on horses      606—07
Hahn — Banach of classificatory judgements      189
Hahn — Banach of comparative probability ordering      192
Hahn — Banach of desirable gambles      151 53
Hahn — Banach of independent marginals      452—57
Hahn — Banach of Lebesgue measure      (see Lebesgue measure)
Hahn — Banach of structural judgements      475
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå