Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Walley P. — Statistical reasoning with imprecise probabilities
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Statistical reasoning with imprecise probabilities
Àâòîð: Walley P.
Àííîòàöèÿ: This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1991
Êîëè÷åñòâî ñòðàíèö: 706
Äîáàâëåíà â êàòàëîã: 10.12.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Lebesgue measure (on unit interval), inner and outer 98—99 131—32 136 37 149—50 325 327
Lebesgue measure (on unit interval), non-measurable sets 149—50
Lebesgue measure (on unit interval), translation-invariant extensions 144—45
Lehman, R.S. 494
Lehmann, E.L. 501 569 570 571 573
Leibler, R.A. 523
Lemmer, J.F. 490
Levi, I. 34 44 48 238 478 480 481 482 483 487 488 490 496 499 507 519 520 530 532 536 537 543 545 547 555 557 562 563 564 592
Levine, R.D. 540
Lewis, D. 563
Lichtenstein, S. 480 488 501 510 536
Likelihood function 400 427
Likelihood function for continuous sample space 435—37
Likelihood function, imprecise 431
Likelihood function, medial 431—32
Likelihood function, upper and lower 431 441
Likelihood inference (see Inference statistical likelihood)
Likelihood principle 434—41
Likelihood principle for continuous sample spaces 435—40
Likelihood principle for discrete sample spaces 434—35
Likelihood principle for imprecise likelihoods 440—41
Likelihood principle, satisfied by natural extension 427 431—32
Likelihood principle, satisfied by regular extension 641
Likelihood principle, violated by frequentist inferences 583
Likelihood principle, violated by noninformative priors 229 232 583
Likelihood ratios, upper and lower 433
Lindley, D.V. 16 43 44 45 241 242 245 246 478 486 487 490 492 499 500 516 521 523 526 528 532 533 534 535 536 537 538 544 546 568 583 590 647
Lindman, H. 44 528 533 536
Linear programming 175 511
Linear space (see Space linear)
Linear-vacuous mixture (see Mixture linear-vacuous)
Linearity 66 86—89 609 linear Additivity)
Linkage between prior and sampling model 399—400 405 423—24
Location (see Parameter location)
Logic deductive 485 494
Logic deductive, fuzzy 50 265—66 538
Logic deductive, inductive (see also Interpretations of probability and prevision logical)
Loomis, L.H. 493
Loss function (see Utility)
Loss, axioms for 346 364 380 389
Loss, examples of 28 67 72 85 177 187 279 280 288 311 312 321—23 604 635—36
Loss, in non-statistical problems 28—29 67—72 114—16
Loss, in statistical problems 343—46
Loss, partial 344—45
Loss, sure 346
Luce, R.D. 660
Machlup, F. 524
Mackenzie, B.D. 481
Mallows, C.L. 488 565 590
Mamdani, A. 669
Mann, L. 484
Mansfield, U. 524
Manski, C.F. 491 513 517 518 536
Mapping, multivalued 182—84 273—74
March, J.G. 488
Marginalization 181—82
Marginals 181—82 314
Marginals, compatible 453
Marginals, independent 448 (see also Prevision joint)
Market economics 65 72 493 627—28
Martin, A.W. 538
Maximality in preference ordering 161
Maximality in preference ordering, relation to Bayesian optimality 162 63 165—66
McClure, J. 47 517
Mean, invariant 140
Measurability Lebesgue 98 149—50
Measurability Lebesgue with respect to a field 129 306
Measurability Lebesgue with respect to a partition 291 306
Measure construction of integral from 128—29 (see also Additivity countable)
Measurement biased, biases in 624—28 631
Measurement biased, bookmaking procedure 625—28
Measurement biased, comparison with standard events 196—97
Measurement biased, for comparing assessors 630 632—35
Measurement biased, general elicitation procedure 168—74
Measurement biased, imprecise 250 329 436—40
Measurement biased, model for 399—400 405 423—24
Measurement biased, multiple-price procedure 628—29 630
Measurement biased, scoring rules, see Scoring rules symmetric procedure 629—33
Measurement biased, two-sided betting procedure 243 624—25
Medical diagnosis 40 50 529 700
Mellor, D.H. 44 352 354 480 481 482 483 499 500 510 521 534 536 537 545 547 559 562 563 564 624
Membership function 261—66
Membership function, assessment of 262 264—65
Membership function, Zadehb’s rules of combination 265—66
Menges, G. 530
Methods of statistical inference (see Inference statistical)
Mill, J.S. 43 526
Minimax decision (see Decision rules Action minimax)
Minimax theorem 613
Mitchell, A.F.S. 528
Mixture (see Convex combination)
Mixture, linear-vacuous 93—94 135 147 202—03
Mixture, preserved under conditioning 309 311—12 325
Model building, statistical 35—37 38 359—60 467—68 assessment)
Models, approximate 355—56
Models, construction of 359—60 467—68
Models, continuous 435—40
Models, hierarchical 37 232 259—60
Models, imprecise 356—60 399—400 405 423—24 430—34 440—41 467—71
Models, interpretations of (see Interpretations of probability and prevision robust)
Money pump 28
Monotonicity complete 272
Monotonicity complete of preferences 154 156
Monotonicity complete of previsions 76 88 2— 130
Mood, A.M. 569
Moore, G.H. 504 505 506
Moore, P.G. 510
Moreno, E. 517 518 536
Morgenstem, O. 490 492
Moses, L.E. 491
Mosteller, F. 487 500 536 544 565
Murphy, A.H. 536
MYCIN 50
Nachbin, L. 568
Nagel, E. 565
Namioka, I. 506 608
Nathanson, S. 484
Natural extension (see Extension natural)
Nau, R.F. 489 536 538
Nazaret, W.A. 538
Near-ignorance (see Ignorance near
Near-ignorance, constant odds-ratio (see Odds ratio constant)
Neyman, J. 11 22 42 112 235 377 386 483 569 572 573
Ng, K. — F. 506
Nisbett, R.E. 483 488
Norman, R. 481
Novick, M.R. 228 521 525 590 686
Nuclear risk 246
Objectivity different, meanings of 111—14
Observation 284 336—37
Observation, continuous 328—32 436—40
Observation, modelled as an event 284 336—38
Observation, preserved under conditioning 309—10
Observation, preserved under statistical updating 401
Observation, unexpected 336 525
Observation, unreliable 274 276 339
Okuda, T. 538
Olshen, R.A. 571
Papamarcou, A. 49 564 592
Paradox of ideal evidence 220
PARAMETER 349
Parameter space 349 362
Parameter, learning 219
Parameter, location 229 372 383—84
Parameter, location-scale 232 373
Parameter, meaningful 350 465—66
Parameter, nuisance 357 468
Parameter, region of values 205 218
Parameter, scale 372
Parameter, true value 350 355—56 360
Pari-mutuel model (see Betting parimutuel
Parikh, R. 507 559
Parnes, M. 507 559
Partition of possible observations 284 289
Pauker, S.G. 490
Pearl, J. 49 489 490 538 560
Pearman, A.D. 48 507 536
Pears, D.F. 484
Pearson, K. 521
Pedersen, J.G. 568 569 571
Peirce, C.S. 43 481 500 522 523 526 562
Penalty function (see Scoring rules)
Pereira, C.A.B. 529
Pericchi, L.R. ix 479 497 500 510 517 518 525 528 529 535 536 537 538 559 568 576 584
Perks, W. 228
Permutability 457—60
Permutability and convergence of relative frequencies 465
Permutability as a structural judgement 473 475—76
Permutability, compared to exchangeability 460—62
Permutability, examples of 459 469
Permutability, grounds for 458
Permutation-invariance 111—13 (see Invariance Physicality)
Phillips, L.D. 521 583 662
Pierce, D.A. 377 536 570 572 573
Pincus, D. 506
Pitz, G.F. 480 536
Polasek, W. 518 536
Popper, K.R. 480 500 501 522 562 563 564 565
Possibility 54—58
Possibility space 54
Possibility space in decision problems 24 239
Possibility space in statistical problems 362
Possibility space, arguments against 3—8 43—44 226—35 397
Possibility space, arguments for 235—53
Possibility space, axioms of 31—32 91—92 241—48
Possibility space, Bayesian dogma of 3 241
Possibility space, dogma of ideal 7 105—07 254—57
Possibility space, frequentist dogma of 564
Possibility space, ideal versus idealization 106—07 249 254
Possibility space, limits to 215 216 359 471
Possibility space, modifications of 56—57 180—86 337 38
Possibility space, not necessary for decision 236 243
Possibility space, observable 118
Possibility, apparent 55
Possibility, epistemic 55
Possibility, new 184—85
Possibility, practical 56
Possibility, pragmatic 56 185
Potter, J.M. 536
Prade, H. 50 538 539 669
Pratt, J.W. 515 516 533 545 547 572 601
Prediction, probabilistic 422
Prediction, versus explanation 360 466
preference 47 153—56
Preference, almost 153—54
Preference, axioms for, refer to Index of axioms 680
Preference, behavioural meaning 153 236—237
Preference, complete 157 241—47
Preference, correspondence with desirability 153
Preference, correspondence with linear previsions 158
Preference, correspondence with lower previsions 156
Preference, intransitive 28—29
Preference, more fundamental than prevision 159
Preference, real 616
Preference, role in decision making 160—62
Preference, strict 155—56 161
Preference, versus choice 236—37 242 247
Prevision 282—340 (see also Probability Interpretations
Prevision, axioms for, refer to Index of axioms 680
Prevision, basic properties 76—80
Prevision, behavioural interpretation 61—63
Prevision, coherence with sampling model 362—67
Prevision, conglomerate 317
Prevision, constructed from conditional and marginal previsions 313—17 421—24
Prevision, constructed from independent marginals 452—57
Prevision, constructed from permutable marginals 459 475—76
Prevision, correspondence with other models 145 147 156
Prevision, defined through generalized Bayes rule 400—03 427 432
Prevision, determined by additive probability 91 128—29
Prevision, envelopes of, see Envelopes extensions of 136—39
Prevision, examples of 92—101
Prevision, exchangeable 460—61
Prevision, ideal 105—07 254—57 258—59
Prevision, independent (see also Prevision, product) 452
Prevision, invariant 139—45
Prevision, linear 66 86—92
Prevision, may be less precise than prior prevision 223—26 298—300 433 551
Prevision, needed to measure uncertainty in conclusions 22 110 252 388
Prevision, non-conglomerable 311 312 321 23
Prevision, not determined by conditional and marginal previsions 404—05 423—24
Prevision, not determined by lower probability 82—84 177
Prevision, not determined by prior assessments 337—38 395—96 399—400 433—34 437—40
Prevision, permutable 457
Prevision, posterior 362 424
Prevision, regular 640—41
Prevision, regular Bayesian 438—39
Prevision, standard Bayesian 393—96 428
Prevision, true (see Ideal)
Prevision, updated, Conglomerability contingent 284—89 (see also Prevision conditional)
Prevision, vacuous 298 308 366—67 391—92 428—29 438 conditional
Price for gamble buying 61 625 629—30
Price for gamble buying, contingent 284
Price for gamble buying, fair (buying and selling) 66 86 241 44
Price for gamble buying, selling 65 625 629 Prevision linear Prevision lower)
Price for gamble buying, updated 284 303 305
Principle of indifference 227 267
Principle of insufficient reason (see Principle of indifference)
Principle of maximum entropy (PME) 266—72
Principles of rationality 27—32 33—35
Prior prevision (see Prevision prior)
Prisoners problem 279 299—300
Probability, additive 89—91 (see also Additivity Prevision linear)
Probability, as a betting rate 82 602—03
Probability, classificatory 188—91 197 248
Probability, comparative 45—46 191—97 241 244—46 600—01
Probability, comparison with other scientific concepts 249—50
Probability, conditional (see Prevision conditional
Probability, correspondence with linear prevision 91 128—29
Probability, examples of 259 271
Probability, imprecise 260—61
Probability, unconditional (see Probability lower
Probability, vacuous (see Prevision vacuous
Probability, zero-one valued 100—01 147—50
Propositions 491
Psychology of action 17—20
Psychology, experimental studies of decision and indeterminacy 48 116—17 254 632—34
Purves, R.A. 579
Putnam, H. 488
Quantiles, upper and lower 204
quantum mechanics 358 480 491
Quinlan, J.R. 50 513
Radioactivity 352
Radon — Nikodym derivative 436 574
Raiffa, H. 241 516 518 519 521 523 531 532 533 545 547
Ramsey, F.P. 43 45 241 243 244 249 481 483 488 489 490 491 494 531 534 545 548 562
Random quantity 57—58 (see also Gamble Random variable)
Random quantity, Aristotelean 484
Random quantity, bounded 40—41 599
Random quantity, external 27—28 33—42 113
Random quantity, internal 27—32 42
Random quantity, principles of (see Principles of rationality versus reasoning)
Randomization in decision making 162
Randomization in experimental design 299
Randomness 358 (see also Chance)
Randomness, versus ignorance 113—14 212
Rapoport, A. 672
Rasmuson, D.M. 532
Rawls, J. 484 485
Raz, J. 481
Reason, limitations of 40—41 116—17 241
Ðåêëàìà