Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Walley P. — Statistical reasoning with imprecise probabilities
Walley P. — Statistical reasoning with imprecise probabilities



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistical reasoning with imprecise probabilities

Àâòîð: Walley P.

Àííîòàöèÿ:

This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 706

Äîáàâëåíà â êàòàëîã: 10.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lebesgue measure (on unit interval), inner and outer      98—99 131—32 136 37 149—50 325 327
Lebesgue measure (on unit interval), non-measurable sets      149—50
Lebesgue measure (on unit interval), translation-invariant extensions      144—45
Lehman, R.S.      494
Lehmann, E.L.      501 569 570 571 573
Leibler, R.A.      523
Lemmer, J.F.      490
Levi, I.      34 44 48 238 478 480 481 482 483 487 488 490 496 499 507 519 520 530 532 536 537 543 545 547 555 557 562 563 564 592
Levine, R.D.      540
Lewis, D.      563
Lichtenstein, S.      480 488 501 510 536
Likelihood function      400 427
Likelihood function for continuous sample space      435—37
Likelihood function, imprecise      431
Likelihood function, medial      431—32
Likelihood function, upper and lower      431 441
Likelihood inference      (see Inference statistical likelihood)
Likelihood principle      434—41
Likelihood principle for continuous sample spaces      435—40
Likelihood principle for discrete sample spaces      434—35
Likelihood principle for imprecise likelihoods      440—41
Likelihood principle, satisfied by natural extension      427 431—32
Likelihood principle, satisfied by regular extension      641
Likelihood principle, violated by frequentist inferences      583
Likelihood principle, violated by noninformative priors      229 232 583
Likelihood ratios, upper and lower      433
Lindley, D.V.      16 43 44 45 241 242 245 246 478 486 487 490 492 499 500 516 521 523 526 528 532 533 534 535 536 537 538 544 546 568 583 590 647
Lindman, H.      44 528 533 536
Linear programming      175 511
Linear space      (see Space linear)
Linear-vacuous mixture      (see Mixture linear-vacuous)
Linearity      66 86—89 609 linear Additivity)
Linkage between prior and sampling model      399—400 405 423—24
Location      (see Parameter location)
Logic deductive      485 494
Logic deductive, fuzzy      50 265—66 538
Logic deductive, inductive      (see also Interpretations of probability and prevision logical)
Loomis, L.H.      493
Loss function      (see Utility)
Loss, axioms for      346 364 380 389
Loss, examples of      28 67 72 85 177 187 279 280 288 311 312 321—23 604 635—36
Loss, in non-statistical problems      28—29 67—72 114—16
Loss, in statistical problems      343—46
Loss, partial      344—45
Loss, sure      346
Luce, R.D.      660
Machlup, F.      524
Mackenzie, B.D.      481
Mallows, C.L.      488 565 590
Mamdani, A.      669
Mann, L.      484
Mansfield, U.      524
Manski, C.F.      491 513 517 518 536
Mapping, multivalued      182—84 273—74
March, J.G.      488
Marginalization      181—82
Marginals      181—82 314
Marginals, compatible      453
Marginals, independent      448 (see also Prevision joint)
Market economics      65 72 493 627—28
Martin, A.W.      538
Maximality in preference ordering      161
Maximality in preference ordering, relation to Bayesian optimality      162 63 165—66
McClure, J.      47 517
Mean, invariant      140
Measurability Lebesgue      98 149—50
Measurability Lebesgue with respect to a field      129 306
Measurability Lebesgue with respect to a partition      291 306
Measure construction of integral from      128—29 (see also Additivity countable)
Measurement biased, biases in      624—28 631
Measurement biased, bookmaking procedure      625—28
Measurement biased, comparison with standard events      196—97
Measurement biased, for comparing assessors      630 632—35
Measurement biased, general elicitation procedure      168—74
Measurement biased, imprecise      250 329 436—40
Measurement biased, model for      399—400 405 423—24
Measurement biased, multiple-price procedure      628—29 630
Measurement biased, scoring rules, see Scoring rules symmetric procedure      629—33
Measurement biased, two-sided betting procedure      243 624—25
Medical diagnosis      40 50 529 700
Mellor, D.H.      44 352 354 480 481 482 483 499 500 510 521 534 536 537 545 547 559 562 563 564 624
Membership function      261—66
Membership function, assessment of      262 264—65
Membership function, Zadehb’s rules of combination      265—66
Menges, G.      530
Methods of statistical inference      (see Inference statistical)
Mill, J.S.      43 526
Minimax decision      (see Decision rules Action minimax)
Minimax theorem      613
Mitchell, A.F.S.      528
Mixture      (see Convex combination)
Mixture, linear-vacuous      93—94 135 147 202—03
Mixture, preserved under conditioning      309 311—12 325
Model building, statistical      35—37 38 359—60 467—68 assessment)
Models, approximate      355—56
Models, construction of      359—60 467—68
Models, continuous      435—40
Models, hierarchical      37 232 259—60
Models, imprecise      356—60 399—400 405 423—24 430—34 440—41 467—71
Models, interpretations of      (see Interpretations of probability and prevision robust)
Money pump      28
Monotonicity complete      272
Monotonicity complete of preferences      154 156
Monotonicity complete of previsions      76 88 2— 130
Mood, A.M.      569
Moore, G.H.      504 505 506
Moore, P.G.      510
Moreno, E.      517 518 536
Morgenstem, O.      490 492
Moses, L.E.      491
Mosteller, F.      487 500 536 544 565
Murphy, A.H.      536
MYCIN      50
Nachbin, L.      568
Nagel, E.      565
Namioka, I.      506 608
Nathanson, S.      484
Natural extension      (see Extension natural)
Nau, R.F.      489 536 538
Nazaret, W.A.      538
Near-ignorance      (see Ignorance near
Near-ignorance, constant odds-ratio      (see Odds ratio constant)
Neyman, J.      11 22 42 112 235 377 386 483 569 572 573
Ng, K. — F.      506
Nisbett, R.E.      483 488
Norman, R.      481
Novick, M.R.      228 521 525 590 686
Nuclear risk      246
Objectivity different, meanings of      111—14
Observation      284 336—37
Observation, continuous      328—32 436—40
Observation, modelled as an event      284 336—38
Observation, preserved under conditioning      309—10
Observation, preserved under statistical updating      401
Observation, unexpected      336 525
Observation, unreliable      274 276 339
Okuda, T.      538
Olshen, R.A.      571
Papamarcou, A.      49 564 592
Paradox of ideal evidence      220
PARAMETER      349
Parameter space      349 362
Parameter, learning      219
Parameter, location      229 372 383—84
Parameter, location-scale      232 373
Parameter, meaningful      350 465—66
Parameter, nuisance      357 468
Parameter, region of values      205 218
Parameter, scale      372
Parameter, true value      350 355—56 360
Pari-mutuel model      (see Betting parimutuel
Parikh, R.      507 559
Parnes, M.      507 559
Partition of possible observations      284 289
Pauker, S.G.      490
Pearl, J.      49 489 490 538 560
Pearman, A.D.      48 507 536
Pears, D.F.      484
Pearson, K.      521
Pedersen, J.G.      568 569 571
Peirce, C.S.      43 481 500 522 523 526 562
Penalty function      (see Scoring rules)
Pereira, C.A.B.      529
Pericchi, L.R.      ix 479 497 500 510 517 518 525 528 529 535 536 537 538 559 568 576 584
Perks, W.      228
Permutability      457—60
Permutability and convergence of relative frequencies      465
Permutability as a structural judgement      473 475—76
Permutability, compared to exchangeability      460—62
Permutability, examples of      459 469
Permutability, grounds for      458
Permutation-invariance      111—13 (see Invariance Physicality)
Phillips, L.D.      521 583 662
Pierce, D.A.      377 536 570 572 573
Pincus, D.      506
Pitz, G.F.      480 536
Polasek, W.      518 536
Popper, K.R.      480 500 501 522 562 563 564 565
Possibility      54—58
Possibility space      54
Possibility space in decision problems      24 239
Possibility space in statistical problems      362
Possibility space, arguments against      3—8 43—44 226—35 397
Possibility space, arguments for      235—53
Possibility space, axioms of      31—32 91—92 241—48
Possibility space, Bayesian dogma of      3 241
Possibility space, dogma of ideal      7 105—07 254—57
Possibility space, frequentist dogma of      564
Possibility space, ideal versus idealization      106—07 249 254
Possibility space, limits to      215 216 359 471
Possibility space, modifications of      56—57 180—86 337 38
Possibility space, not necessary for decision      236 243
Possibility space, observable      118
Possibility, apparent      55
Possibility, epistemic      55
Possibility, new      184—85
Possibility, practical      56
Possibility, pragmatic      56 185
Potter, J.M.      536
Prade, H.      50 538 539 669
Pratt, J.W.      515 516 533 545 547 572 601
Prediction, probabilistic      422
Prediction, versus explanation      360 466
preference      47 153—56
Preference, almost      153—54
Preference, axioms for, refer to Index of axioms      680
Preference, behavioural meaning      153 236—237
Preference, complete      157 241—47
Preference, correspondence with desirability      153
Preference, correspondence with linear previsions      158
Preference, correspondence with lower previsions      156
Preference, intransitive      28—29
Preference, more fundamental than prevision      159
Preference, real      616
Preference, role in decision making      160—62
Preference, strict      155—56 161
Preference, versus choice      236—37 242 247
Prevision      282—340 (see also Probability Interpretations
Prevision, axioms for, refer to Index of axioms      680
Prevision, basic properties      76—80
Prevision, behavioural interpretation      61—63
Prevision, coherence with sampling model      362—67
Prevision, conglomerate      317
Prevision, constructed from conditional and marginal previsions      313—17 421—24
Prevision, constructed from independent marginals      452—57
Prevision, constructed from permutable marginals      459 475—76
Prevision, correspondence with other models      145 147 156
Prevision, defined through generalized Bayes rule      400—03 427 432
Prevision, determined by additive probability      91 128—29
Prevision, envelopes of, see Envelopes extensions of      136—39
Prevision, examples of      92—101
Prevision, exchangeable      460—61
Prevision, ideal      105—07 254—57 258—59
Prevision, independent (see also Prevision, product)      452
Prevision, invariant      139—45
Prevision, linear      66 86—92
Prevision, may be less precise than prior prevision      223—26 298—300 433 551
Prevision, needed to measure uncertainty in conclusions      22 110 252 388
Prevision, non-conglomerable      311 312 321 23
Prevision, not determined by conditional and marginal previsions      404—05 423—24
Prevision, not determined by lower probability      82—84 177
Prevision, not determined by prior assessments      337—38 395—96 399—400 433—34 437—40
Prevision, permutable      457
Prevision, posterior      362 424
Prevision, regular      640—41
Prevision, regular Bayesian      438—39
Prevision, standard Bayesian      393—96 428
Prevision, true      (see Ideal)
Prevision, updated, Conglomerability contingent      284—89 (see also Prevision conditional)
Prevision, vacuous      298 308 366—67 391—92 428—29 438 conditional
Price for gamble buying      61 625 629—30
Price for gamble buying, contingent      284
Price for gamble buying, fair (buying and selling)      66 86 241 44
Price for gamble buying, selling      65 625 629 Prevision linear Prevision lower)
Price for gamble buying, updated      284 303 305
Principle of indifference      227 267
Principle of insufficient reason      (see Principle of indifference)
Principle of maximum entropy (PME)      266—72
Principles of rationality      27—32 33—35
Prior prevision      (see Prevision prior)
Prisoners problem      279 299—300
Probability, additive      89—91 (see also Additivity Prevision linear)
Probability, as a betting rate      82 602—03
Probability, classificatory      188—91 197 248
Probability, comparative      45—46 191—97 241 244—46 600—01
Probability, comparison with other scientific concepts      249—50
Probability, conditional      (see Prevision conditional
Probability, correspondence with linear prevision      91 128—29
Probability, examples of      259 271
Probability, imprecise      260—61
Probability, unconditional      (see Probability lower
Probability, vacuous      (see Prevision vacuous
Probability, zero-one valued      100—01 147—50
Propositions      491
Psychology of action      17—20
Psychology, experimental studies of decision and indeterminacy      48 116—17 254 632—34
Purves, R.A.      579
Putnam, H.      488
Quantiles, upper and lower      204
quantum mechanics      358 480 491
Quinlan, J.R.      50 513
Radioactivity      352
Radon — Nikodym derivative      436 574
Raiffa, H.      241 516 518 519 521 523 531 532 533 545 547
Ramsey, F.P.      43 45 241 243 244 249 481 483 488 489 490 491 494 531 534 545 548 562
Random quantity      57—58 (see also Gamble Random variable)
Random quantity, Aristotelean      484
Random quantity, bounded      40—41 599
Random quantity, external      27—28 33—42 113
Random quantity, internal      27—32 42
Random quantity, principles of      (see Principles of rationality versus reasoning)
Randomization in decision making      162
Randomization in experimental design      299
Randomness      358 (see also Chance)
Randomness, versus ignorance      113—14 212
Rapoport, A.      672
Rasmuson, D.M.      532
Rawls, J.      484 485
Raz, J.      481
Reason, limitations of      40—41 116—17 241
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå