Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Walley P. — Statistical reasoning with imprecise probabilities
Walley P. — Statistical reasoning with imprecise probabilities



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistical reasoning with imprecise probabilities

Àâòîð: Walley P.

Àííîòàöèÿ:

This text presents a theory of probabilistic reasoning, statistical inference and decision. The book is concerned with the problems of reasoning under conditions of uncertainty, partial information and ignorance. It is argued that, in order to give appropriate weight to both ignorance and uncertainty, imprecise probabilities need to be assessed. The imprecision can be modelled mathematically by upper and lower probabilities or (more generally) upper and lower previsions. The degree of imprecision can reflect both the amount of information on which probabilities are based and the extent of conflict between different types of information. The book develops mathematical methods for reasoning using imprecise probabilities. These include methods for assessing probabilities, modifying the assessments to achieve coherence, updating them to take account of new information, and combining them to calculate other probabilities, draw conclusions and make decisions. The methods are extended in the second half of the book to construct a general theory of conditional probability and statistical inference. The mathematical theory is based on simple and compelling principles of avoiding sure loss, coherence and natural extension. Careful attention is given to the philosophical foundations, interpretation and justification of the theory. It is compared with alternate theories of inference, including Bayesian theories (which require all probability assesments to be precise), Bayesian sensitivity analysis, the Neyman-Pearson theory of confidence intervals, the Dempster-Shafer theory of belief functions and the theory of fuzzy sets. The theory is applicable to a wide range of disciplines including statistics, decision theory, economics, psychology, philosophy of science, management science, operations research, engineering and artificial intelligence. (References are given to related work in these fields). In fact, the theory has important implications for any field in which the problems of uncertainty and limited information are taken seriously. This book should be of interest to researchers in statistics and those in related disciplines.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 706

Äîáàâëåíà â êàòàëîã: 10.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
action      24 160—61 235—41
Action as a rationality axiom      32 326—27
Action, admissible      161
Action, Bayes      162 165—66 237—40
Action, Behaviour Additivity      89—92
Action, countable      323—27 453—54
Action, de Finettib’s arguments against      326
Action, finite versus countable, examples      70 97—99 310—11 313 321—23 325—26 365 390 396 420—21 450
Action, identified with gamble      160—61
Action, maximal      161—66
Action, minimax      163 166 240 269—70 619 630
Action, optimal, see Action, Bayes reasonable but not Bayes      165—66
Action, relation to conglomerability      310 13 323—24
Action, satisfactory      239—41 (see also Decision)
Action, sub- and super      30 84 600
Aczel, J.      523 534 540
Adams, J.B.      50
Admissibility      161 231
Admissibility, compared to coherence      345 509 527
Admissibility, relation to Bayesian optimality      163—64 253
Agassi, J.      500
Aggregation      (see Combination of assessments)
Agreement, interpersonal      111—13 361
Algorithms for checking coherence      597—98
Algorithms for computing extreme points      174 76 511
Algorithms for computing joint previsions      316 17 454—55
Algorithms for generalized Bayes rule      550 581
Algorithms or computing natural extension      136 174—76
Allais, M.      429
Amaral — Turkman, M.A.      523
Ambiguity      216 261—64 266
Amenability      504
Anderson, B.D.O.      536
Anderson, J.R.      482
Andrews, S.E.      490
Anger, B.      502
Anscombe, F.J.      241 533
Approximation in model building      117 (see also Idealization)
Arbitrage      72
Aristotle      484 485
Armstrong, D.M.      481 482 491
Armstrong, T.E.      516
artificial intelligence      (see Expert systems)
Asai, K.      538
Assessment      32—42 167
Assessment as a sequential process      177—78
Assessment of class of conjugate priors      205—06 218—19 221 225
Assessment of intervals of measures      201—02
Assessment of neighbourhoods      202—03
Assessment of prior previsions      198 200—06 221 403 424 429
Assessment of sampling models      359—60
Assessment of upper and lower density functions      200—02
Assessment of upper and lower distribution functions      203—05
Assessment of upper and lower probabilities      197 99
Assessment of upper and lower probability ratios      199—200
Assessment of upper and lower quantiles      204—05
Assessment strategies      (see Strategies assessment)
Assessment, combination of      (see Combination of assessments in football)
Assessment, experiment      634—35
Assessment, guided by an expert system      40 512
Assessment, incomplete      173 212 215—16 256—57 285—86
Assessment, inconsistent      187—88 213—14 216—17
Assessment, reliable      285 288—89
Assessment, using conditional previsions      286 300
Assessment, versus elicitation      15 22—23 167
Assessment, well grounded in evidence      113—14 (see also Strategies assessment Judgement Elicitation Extension)
Assignment, probability      273
Aumann, R.J.      241 490 533
Avoiding sure loss      28—29 67—72 115—16 293—94 346
Avoiding sure loss in betting on horses      603—05
Avoiding sure loss in football experiment      635
Avoiding sure loss, comparison with coherence      67 74
Avoiding sure loss, justification for      68 295 343—45
Avoiding sure loss, objections to the emphasis on      114—16
Avoiding sure loss, relation to dominating linear previsions      134—35 (see also Loss)
Axiom of Choice      505 611
Axioms, index of      680
Axioms, role of      31—32
Ayer, A.J.      487 501
Banach limits      143—44
Barnard, G.A.      374 501 558 559 568 584 585
Barndorff — Nielsen, O.      570
Barnett, V.      489 568
Baron, J.      484
Basu, D.      583 584
Bayes decision rule      164
Bayes rule as a lower envelope      298 429 432
Bayes rule as an updating strategy      285—86 335 40
Bayes rule as coherence relation (axiom C      12 297 300 303—04 335
Bayes rule as natural extension      318—19 411—12 424—27
Bayes rule for imprecise likelihood functions      337—38 430—34
Bayes rule for precise likelihood functions      392 400—03 424—29
Bayes rule, algorithms for solving      550 581
Bayes rule, conditions for applying      300—01 334 37
Bayes rule, examples of      298—300 308—13
Bayes rule, generalized (GBR)      185 297—301 400—03 424—34
Bayes rule, may yield imprecise updated probabilities      298—301 334 336 338—40 conditional)
Bayes rule, psychological model for      17—19 25
Bayes rule, relation to beliefs      17—21 22 109—10 Decision Interpretations behavioural)
Bayes rule, Updating Behaviour      17—21
Bayes, T.      43 220 228 377 493 521
Bayesian inference      (see Inference statistical)
Bayesian sensitivity analysis      (see Sensitivity analysis)
Bayesian sensitivity analysis as an updating strategy      336 560
Bayesian sensitivity analysis for density functions      331—33 393—96 438—40
Bayesian sensitivity analysis in statistical problems      393—97 427—9 432
Bayesian sensitivity analysis not valid for arbitrary conditioning variables      332 559
Bayesian sensitivity analysis, not sufficient for coherence      305 321
Beach, B.H.      501
Becker, S.W.      48
Behaviourism      19—20
Belief functions      183—84 272—81 358
Belief functions, behavioural interpretation of      280—81
Belief functions, generated through multivalued mapping      182—84 273—74
Belief functions, not sufficiently general      184 274—75
Beliefs      17—19
Beliefs as behavioural dispositions      18—20 481
Beliefs of experts      47 113 213—14 622—23 626
Beliefs, combination of      (see Combination of assessments)
Beliefs, conflicting      213—14
Beliefs, evolution of      177—78
Beliefs, group      5 105 113 186—88
Beliefs, indeterminate      209—10
Beliefs, mathematical models for      51 156 159—60
Beliefs, rational      26—29 32
Beliefs, role in statistical inference      109—11
Beliefs, second-order      258—61 262 264 510 Indeterminacy Uncertainty)
Bellman, R.E.      538 539
Beran, R.J.      489 545
Berberian, S.K.      504 608
Berger, J.O.      43 44 255 256 257 374 478 479 487 488 492 497 500 501 507 508 510 517 518 520 525 526 527 528 529 530 532 535 536 538 540 569 570 573 583 584
Berliner, L.M.      497 518 536
Bernardo, J.M.      228 229 233 525 526 528 540 583 584
Bernoulli models      205 217 467
Bernoulli models, approximate      356 454—55
Bernoulli models, compared to exchangeability      112—13 463—66
Bernoulli models, robust      467—71
Bernoulli, J.      489 543
Beta distribution      (see Distribution beta
Beta distribution on confidence intervals      380—82 386
Beta distribution on football games      632—38
Beta distribution on horses      94—95 245 602—07
Beta distribution, objections to the emphasis on      114—16
Beta distribution, on parameter values      118—19 367—68 429
Beta distribution, pari-mutuel system      94—95 130—31 135 147 202—03 604—06 690
Betting procedure, biased      381—82 384 565—66
Betting rates      82 602—03
Betting rates of bookmakers      87—88 95 245 602 605 625 28
Betting rates, fair (two-sided)      89 243—44 251 624—25
Betting rates, lower      82 251 632
Betting rates, upper      82 602 632 Probability additive Probability lower Probability upper)
Beyth — Marom, R.      514 539
Bhaskara Rao, K.P.S.      496 498 504
Bhaskara Rao, M.      496 498 504
Bias in elicitation      624—28
Bias of measuring instrument, model for      399—400 405 423—24
Biller, W.F.      538
Billingsley, P.      498 553 558 559 574 587 588
Birnbaum, A.      483 572 583 584
Blachman, N.M.      523
Black, M.      514 539
Blackburn, S.      563
Blackwell, D.      528
Block, N.      482 491
Blum, J.R.      530 536
Boes, D.C.      569
Boesky, I.F.      495
Bondar, J.V.      569
Bookmakers (see also Betting rates)      95 245 625—28
Boole, G.      43 44 487 489 494 503 526 586
Borel cr-field      98
Borel, E.      43 46 481 489 624 625
Bounds, upper and lower for chances      356—57 468
Bounds, upper and lower for chances for conditional probabilities      296 301
Bounds, upper and lower for chances for density functions      199—201
Bounds, upper and lower for chances for posterior previsions      432
Bounds, upper and lower for chances for probabilities      35 46—47 216 Envelopes)
Box, G.E.P.      43 228 229 233 500 525 526 528 538 564 565 567 568 583 584 593
Braithwaite, R.B.      481 501
Breiman, L.      553
Bridgman, P.W.      482
Brown, L.D.      383 573
Brown, R.V.      499 500 534 536 537
Brownson, F.O.      48
Buchanan, B.G.      50 490 536
Budescu, D.V.      48 510 539 672
Buehler, R.J.      47 377 381 383 494 506 530 568 570
Burgess, J.P.      514
Calibration      39
Campello de Souza, F.M. viii      47 488 500 508 520 529
Cano, J.A.      517 518 536
Cantelli — Levy paradox      365 450
Caramazza, A.      539
Carnap, R.      16 23 34 43 113 238 480
Casella, G.      569 571 572
Certainty      54 209
Certainty factors (MYCIN)      50
Chamberlain, G.      536
Chance      351—59 465—66
Chance, imprecise      358—59 454 468
Chance, lower bound for      356—57 468 588
Chemoff, H.      491
Choice      160—66 236—41
Choice, arbitrary      19 23—41 210
Choice, between models for uncertainty      159 60
Choice, strategies for      239—40
Choice, versus preference      236—37 242 247—48 Action Preference)
Choquet, G.      502 505
Chuang, D.T.      536
Classification of probable events      (see Probability classificatory)
Coarsening (of a possibility space)      181—82
Cohen, L.J.      39 50 488 490 501 539
Coherence      29—30 63—66 72—76 346—47
Coherence for statistical models      366 380 391 392 397 401 404
Coherence for win-and-place betting on horses      605—06
Coherence in football experiment      636
Coherence of Bayesian models      394 405
Coherence of conditional with unconditional previsions      293—96 301—05
Coherence of lower previsions      72—76 134
Coherence of lower probabilities      84—86 135 600
Coherence, algorithm for checking      597—98
Coherence, axioms, refer to Index of axioms      680
Coherence, compared to avoiding sure loss      67 74 347
Coherence, countable      32 495 556
Coherence, general concepts      342—49
Coherence, justification for      60—61 64 73—74 295—96 347
Coherence, relation to dominating linear previsions      134—35 145—46
Coherence, relation to natural extension      74 122 23 408—09
Coherence, separate      289—93
Coherence, strength of      74 116—18
Coherence, strict      32 495 581
Coherence, weak      346—47 391 566
Coin tossing, models for      119 274—75 298—99
Collective (von Mises)      351 564
Combination of assessments      30 39 170—72 178—80 186—88 275—81 338 452—57
Compactness      610
Comparability      (see Completeness)
Completeness      157 190 195—97 241—48 601
Computations      (see Algorithms)
Conclusions      21—22
Conclusions, indeterminate      2 5—6 209—10 226
Conclusions, robust      5—6 256 Inference statistical Prevision posterior)
Conditioning      185—86 282—340
Conditioning on continuous variables      330—33 436—40
Conditioning on events of probability zero      306—07 328—34 391—92 615—16
Conditioning, de Finettin’s theory      282 326—27
Conditioning, examples of      185—86 298—300 308—13 321
Conditioning, in frequentist inference      382 387—88
Conditioning, Kolmogorov’s theory      282 306—08 327 conditional Conglomerability Bayes generalized Updating)
Cone, convex      76
Confidence coefficient      378
Confidence coefficient as a posterior lower probability      386
Confidence coefficient as a posterior probability      22 378—80 388
Confidence coefficient, data-dependent      387
confidence intervals      377—88
Confidence intervals, axioms for coherence      380
Confidence intervals, examples of incoherence      379 382—85
Confidence intervals, interpretations of      378 382 385—87
Confidence intervals, need for conditioning      382 387—88
Confidence intervals, posterior confidence in      378—80 388
Confidence intervals, zero confidence in      379 385 569
Conflict      187—88 213—14 222—26
Conflict, between expert opinions      47 213—14 520
Conflict, between probability models      187—88 213—14 216—17
Conflict, degree of      223 224—26
Conflict, information      6 213—14 222—26
Conglomerability      317—27 614—16 31— 317
Conglomerability for uncountable spaces      324—26 3
Conglomerability, examples of failure      311 321—22
Conglomerability, full      317 614
Conglomerability, justification for      319—20
Conglomerability, relation to countable additivity      310 13 323—24
Conglomerability, relation to sensitivity analysis      327
Conglomerative principle      (see Principles of rationality conglomerative)
Conjugacy      64—65 70
Conjugate prior      (see Density function natural-conjugate)
conjunction rule      186
Consensus      (see Agreement interpersonal Combination
Consistency level      386
Constant odds-ratio (COR) model      (see Odds ratio constant)
Construction of probability models      (see Assessment Strategies assessment Model statistical)
Convergence pointwise      79
Convergence pointwise of relative frequencies      (see Frequency relative)
Convergence pointwise of relative frequencies of upper and lower probabilities      3—4 219 220 223—25 470—71 620—21
Convex combination      79 93
Convex hull      611 613
Convexity      611
Convexity of set of coherent lower previsions      79
Convexity of set of dominating linear previsions      145—46
Convexity of set of gambles      162
Cornfield, J.      569 571
Countable additivity      (see Additivity countable)
Cox, D.R.      386 483 487 489 500 525 526 527 528 565 567 569 570 572 573 583 591
Cox, R.T.      44 534
Credible intervals      383 387
Curley, S.P.      48
Currency, probability      25 59
Dalai, S.R.      518
Daniell integral      493
Daniell, P.J.      493
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå